\(\sqrt{-x^2+2x-1}\)

Đề bài là tìm điều kiện xác định

giải chi tiết hộ mìn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

\(\sqrt{x\left(x+2\right)}\)

\(ĐKXĐ:x\left(x+2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< -2\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\ge0\\x< -2\end{matrix}\right.\)

ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge0\end{matrix}\right.\)

13 tháng 6 2018

Chưa học tới nên sai thì thoi nhé :) 

\(a)\) ĐKXĐ : \(1-16x^2\ge0\)

\(\Leftrightarrow\)\(1^2-\left(4x\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(1+4x\right)\left(1-4x\right)\ge0\)

TH1 : \(\hept{\begin{cases}1+4x\ge0\\1-4x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{4}\\x\le\frac{1}{4}\end{cases}\Leftrightarrow}\frac{-1}{4}\le x\le\frac{1}{4}}\)

TH2 : \(\hept{\begin{cases}1+4x\le0\\1-4x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{-1}{4}\\x\ge\frac{1}{4}\end{cases}}\) ( loại ) 

Vậy ĐKXĐ : \(\frac{-1}{4}\le x\le\frac{1}{4}\)

Chúc bạn học tốt ~ 

22 tháng 8 2021

x≥2

ĐKXĐ: \(-2\le x\le2\)

20 tháng 8 2017

a) \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\orbr{\begin{cases}x\ge3\\x\ge-3\end{cases}}\)

b) \(-x-2\ge0\Leftrightarrow-x\ge2\Leftrightarrow x\ge-2\)

c) \(x^2+2x+1=\left(x+1\right)^2\)

\(\Rightarrow\left(x+1\right)^2\ge0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)

5 tháng 6 2018

ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\x+\sqrt{2x-1}\ge0\\x-\sqrt{2x-1}\ge0\end{cases}}\)

<=>\(\hept{\begin{cases}x\ge\frac{1}{2}\\x+\sqrt{2x-1}\ge0\left(luondungvix\ge\frac{1}{2}\right)\\x\ge\sqrt{2x-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2\ge2x-1\left(x\ge\frac{1}{2}>0\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2\ge0\left(luondung\right)\end{cases}}\)

\(\Leftrightarrow x\ge\frac{1}{2}\)

5 tháng 6 2018

\(x\ge\frac{1}{2}\)

10 tháng 5 2019

ĐKXĐ \(x+2\ne0\)và \(5-x\ne0\)

<=> \(x\ne-2\)và \(x\ne5\)

b)\(\sqrt{4x^2-16+16}=6\)<=> \(\sqrt{2^2\left(x^2-2\cdot x\cdot2+2^2\right)}=6\)<=> \(2\sqrt{\left(x-2\right)^2}=6\)<=> \(|x-2|=3\)

Với \(x-2>0\)<=> \(x>2\)

=> \(|x-2|=x-2\)

Phương trình trở thành \(x-2=3\)<=> \(x=5\)(thỏa)

Với \(x-2< 0\)<=> \(x< 2\)

=> \(|x-2|=-\left(x-2\right)=2-x\)

Phương trình trở thành \(2-x=3\)<=> \(-x=1\)<=> \(x=-1\)(thỏa)

Vậy nghiệm của phương trình là\(x=5\)và\(x=-1\)