\(\frac{32}{n-1}\)là phân số??? (bạn nào giải nhanh hộ mình cái)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

 Để 32/n-1 là phân số thì n-1 phải khác 0

Suy ra n phải khác: 0+1=1

​Vậy n phải khác 1 để 32/n-1 là phân số

Mình làm nhanh nhất đó!

2 tháng 2 2016

để \(\frac{32}{n-1}\)là phân số thì n-1 phải khác 0. suy ra n-1 khác 0.suy ra n khác 1


 

31 tháng 12 2016

Đáp án : n = 3 ; 6 ; 9 ; 12 ; 15 ; ...

31 tháng 12 2016

Bạn giải ra hộ mình được ko?

11 tháng 2 2017

Các phân số trên có dạng \(\frac{a}{n+2+a}\) với a = 6; 7; 8; ...; 65

\(\frac{a}{n+2+a}\)tối giản \(\Leftrightarrow\)ƯCLN(a; n+2+a) = 1 \(\Leftrightarrow\) ƯCLN(n+2; a) = 1

\(\Leftrightarrow\)n + 2 nguyên tố cùng nhau với mỗi số 6; 7; 8; ...; 65 và n + 2 nhỏ nhất

Do đó n + 2 = 67 (67 là số nguyên tố)

nên n = 65

11 tháng 2 2017

Đáp số: 65.

Đúng 100% luôn!

Ai tk cho mình mình tk lại.

14 tháng 8 2018

a)A=(3n+3-5)/n+1

=3-5/(n+1)

14 tháng 8 2018

\(A=\frac{3n-2}{n+1}\inℤ\Leftrightarrow3n-2⋮n+1\)

\(\Rightarrow3n+3-5⋮n+1\)

\(\Rightarrow3\left(n+1\right)-5⋮n+1\)

      \(3\left(n+1\right)⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{0;2;-4;6\right\}\)

\(A=\frac{5}{n-1}+\frac{n-3}{n-1}=\frac{5+n-3}{n-1}=\frac{n-2}{n-1}\)

a) Để A là phân số thì \(n-1\ne0\)

=> \(n\ne1\)

b) ĐK: n khác 1

Để A là 1 số nguyên thì \(n-2⋮n-1\)

\(\Leftrightarrow1⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(1\right)\)

...

20 tháng 2 2020

a) Để A là phân số thì n-1 \(\ne\)0 => n \(\ne\)1

b) \(\frac{5}{n-1}\)\(\frac{n-3}{n-1}\)\(\frac{5+n-3}{n-1}\)\(\frac{n+2}{n-1}\)\(\frac{n-1+3}{n-1}\)\(\frac{3}{n-1}\)

Để A là số nguyên thì 3 \(⋮\)n-1

=> n-1 \(\in\)Ư(3) = { 1; 3; -1; -3}

=> n \(\in\){ 2; 4; 0; -2}

Vậy...

17 tháng 2 2016

suy ra n+10 chia hết cho 2n-8

2.(n+10) chia hết cho 2n-8

2n+20 chia hết cho2n-8

(2n-8)+28 chia hết cho 2n-8

28 chia hết cho 2n-8

2n-8 thuộc ư(28)

17 tháng 2 2016

Ta có:

n+10 chia hết cho 2n-8

=> n+10 chia hết cho n-4

=> n-4+14 chia hết cho n-4

=> 14 chia hết cho n-4

Dó đó n-4 là ước của 14. Cá ước của 14 là: 1;-1;2;-2;7;-7;14;-14

Ta có nhận xét n-4 >= -4 (vì n là số tự nhiên) nên n-4 chỉ nhận các giá trị : 1;-1;2;-2;7;14. Ta có:

* Với n-4 = 1 => n = 5

* Với n-4= -1 => n = 3

* Với n-4 = 2 => n = 6

* Với n-4= -2 => n = 2

* Với n-4 = 7 => n = 11

* Với n-4 = 14 => n = 18

Vậy n thuộc {2;3;5;6;11;18}