\(a^2=\dfrac{2}{3}BN^2\)

Vậy BN=?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

đặt \(am^3=bn^3=cp^3=k^3\)

\(\Rightarrow a=\dfrac{k^3}{m^3};b=\dfrac{k^3}{n^3};c=\dfrac{k^3}{p^3}\)

VT=\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\dfrac{k}{m}+\dfrac{k}{n}+\dfrac{k}{p}=k\)

VF=\(\sqrt[3]{\dfrac{k^3}{m}+\dfrac{k^3}{n}+\dfrac{k^3}{p}}=\sqrt[3]{k^3}=k\)

do đó VT=VF, đẳng thức được chứng minh

3 tháng 6 2017

Đặt VP=A

có căn bâc 3 (am^2+bn^2+cp^2=căn bậc 3 (am^3/m+bn^3/n+cp^3/p)=căn bậc 3 (am^3(1/m+1/n+p)) (do am^3=bn^3=cp^3)

=căn bậc 3 (am^3) (do 1/m+1/n+1/p=1)=> m.căn bậc 3(a)=A=>căn bậc 3 (a)=A/m 

tương tự căn bậc 3 (b)=A/n, căn bậc 3 (p)=A/p 

Cộng theo vế => VT = A/m+A/n+A/p=A(1/m+1/n+1/p)=A=VP (do 1/m+1/n+1/p=1)

3 tháng 6 2017

Toán lớp 9 thì chịu thôi. 

3 tháng 9 2019

\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}=2\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\Leftrightarrow\sqrt{x}-2=3\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\) 

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1=2\) 

\(\Leftrightarrow x=10\)

3 tháng 9 2019

 ĐKXĐ tự tìm\(b,\sqrt{x-4\sqrt{x}+4}=3\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\)

\(\Leftrightarrow\sqrt{x}-2=3\)

\(\Leftrightarrow\sqrt{x}=5\)

\(\Rightarrow x=5^2=25\)

4 tháng 7 2016

À mình viết lộn đề câu 1, co mình sửa lại nhá!

 1) Tìm số nguyên n thỏa:

   \(\sqrt[3]{n+\sqrt{n^2+27}}+\sqrt[3]{n-\sqrt{n^2+27}}=4\)

4 tháng 7 2016

Khi đó nếu bỏ chữ số tận cùng thì số mới là abc

Ta có:

abc3 - abc = (1000a + 100b + 10c + 3) - (100a + 10b + c)

                 => 900a + 90b + 9c + 3=1992

                 => 900a + 90b + 9c=1989

                 => 9(100a + 10b + c)=1989

                 => 100a + 10b + c = 221

                 => abc = 221

                 => abc3 = 2213

              Vậy số cần tìm là 2213

3.a, tính giá trị biểu thức \(A=-1,6:\left(1+\dfrac{2}{3}\right)\) ; \(B=1,4.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\) b,tìm x biết: \(\left(2,8x-32\right):\dfrac{2}{3}=-90\) ; \(\left(4,5-2x\right).1\dfrac{4}{7}=\dfrac{11}{14}\) c, 1 cửa hangfbans 356,6m vải gồm 2 loại: vải oa và vải trắng. biết số vải hoa bằng 78,25% số vải trắng. biết số vải hoa bằng 78,25% số vải trắng. tính số mét vải mỗi...
Đọc tiếp

3.a, tính giá trị biểu thức

\(A=-1,6:\left(1+\dfrac{2}{3}\right)\) ; \(B=1,4.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\)

b,tìm x biết:

\(\left(2,8x-32\right):\dfrac{2}{3}=-90\) ; \(\left(4,5-2x\right).1\dfrac{4}{7}=\dfrac{11}{14}\)

c, 1 cửa hangfbans 356,6m vải gồm 2 loại: vải oa và vải trắng. biết số vải hoa bằng 78,25% số vải trắng. biết số vải hoa bằng 78,25% số vải trắng. tính số mét vải mỗi loại

4

1 người gửi tiết kiệm 20 triệu trong 1 tháng, tính ra lãi đc 112000 đồng. hỏi người ấy đã gửi tiết kiệm với lãi xuất bn % 1 tháng?

5

học kì I, số học sinh giỏi của lớp 6A = \(\dfrac{2}{7}\) số học sinh còn lại. sang học kì 2, số học sinh giỏi tăng thêm 8 bạn (số hs cả lớp ko đổi)ên số học sinh giỏi =\(\dfrac{2}{3}\) số còn lại. hỏi học kì 1 lớp 6A có bn hsg?

nhanh nhé mai cô kiểm tra rồi T_T T_T T_T

1

Bài 5: 

Gọi số học sinh lớp 6A là x

Số học sinh giỏi học kì 1 là 2/9x

THeo đề, ta có: 2/9x+8=2/3(7/9x-8)

=>2/9x+8=14/27x-16/3

=>-8/27x=-40/3

=>x=45

Vậy: Số học sinh giỏi kì 1 là 45x2/9=10(bạn)

17 tháng 7 2018

Đặt \(am^3=bn^3=cp^3=k\)

Ta có \(\sqrt[3]{k}=\sqrt[3]{a}m=\sqrt[3]{b}n=\sqrt[3]{c}p=\frac{\sqrt[3]{a}}{\frac{1}{m}}=\frac{\sqrt[3]{b}}{\frac{1}{n}}=\frac{\sqrt[3]{c}}{\frac{1}{p}}\)

\(=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\frac{1}{m}+\frac{1}{n}+\frac{1}{p}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) \(\left(TCDTSBN\right)\)\(\left(1\right)\)

Ta cũng có \(k=\frac{am^2}{\frac{1}{m}}=\frac{bn^2}{\frac{1}{n}}=\frac{cp^2}{\frac{1}{p}}=\frac{am^2+bn^2+cp^2}{\frac{1}{m}+\frac{1}{n}+\frac{1}{p}}=am^2+bn^2+cp^2\)  \(\left(TCDTSBN\right)\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{k}\)

17 tháng 7 2018

cách khác nhé: 

Đặt:   \(am^3=bn^3=cp^3=k^3\)

\(\Rightarrow\)\(a=\frac{k^3}{m^3};\)\(b=\frac{k^3}{n^3};\)\(c=\frac{k^3}{p^3}\)

Ta có:

\(VT=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)

\(=\sqrt[3]{\frac{k^3}{m^3}}+\sqrt[3]{\frac{k^3}{n^3}}+\sqrt[3]{\frac{k^3}{p^3}}\)

\(=\frac{k}{m}+\frac{k}{n}+\frac{k}{p}=k\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)=k\)    (do 1/m + 1/n + 1/p = 1)

\(VP=\sqrt[3]{am^2+bn^2+cp^2}\)

\(=\sqrt[3]{\frac{k^3}{m^3}.m^2+\frac{k^3}{n^3}.n^2+\frac{k^3}{p^3}.p^2}\)

\(=\sqrt[3]{k^3\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)}=\sqrt[3]{k^3}=k\)   (do 1/m + 1/n + 1/p = 1)

suy ra:   \(VT=VP=k\) (đpcm)

=>\(am^3=bn^3=cp^3=\frac{am^3}{m}+\frac{bn^3}{n}+\frac{cp^3}{p}\)

=>\(am^3=bn^3=cp^3=am^2+bn^2+cp^2\)

\(\sqrt[3]{am^2+bn^2+cp^2}=m\sqrt[3]{a}=n\sqrt[3]{b}=p\sqrt[3]{c}\)

=>\(\sqrt[3]{am^2+bn^2+cp^2}.1=m\sqrt[3]{a}.\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)=\frac{m\sqrt[3]{a}}{m}+\frac{n\sqrt[3]{b}}{n}+\frac{p\sqrt[3]{c}}{p}\)

\(\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)