Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để phương trình có hai nghiệm \(\Leftrightarrow\Delta'=\left(m+1\right)^2-2\left(m^2+4m+3\right)\ge0\Leftrightarrow-m^2-6m-5\ge0\Leftrightarrow m\in\left[-5;-1\right]\)
b. để phương trình có hia nghiệm thì \(m\in\left[-5;-1\right]\) khi đó \(\hept{\begin{cases}x_1+x_2=-\frac{2\left(m+1\right)}{2}=-m-1\\x_1.x_2=\frac{m^2+4m+3}{2}\end{cases}\Rightarrow M=-m-1-m^2-4m-3=-m^2-5m-4}\)
hay \(M=-\left(m+1\right)\left(m+4\right)=\left(-1-m\right)\left(m+4\right)\le\left(\frac{-1-m+m+4}{2}\right)^2=\frac{9}{4}\)
Dấu bằng xảy ra khi \(-1-m=m+4\Leftrightarrow m=-\frac{5}{2}\)
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a) Do x = -3 là 1 nghiệm của phương trình đã cho nên ta có :
(-3)^2 - ( 3m - 2 ) * (-3) + 2m^2 -m+1=0
<=> 9 + 9m - 6 + 2m^2 - m + 1 = 0
<=> 2m^2 + 8m + 4 = 0
<=> m^2 + 4m + 2 = 0
denta phẩy = 2^2 - 1*2 = 4 - 2 = 2 >0
=> m1 = ( -2 + căn 2 ) / 1 = -2 + căn 2
m2 = ( -2 - căn 2 ) / 1 = -2 - căn 2
Vậy với m = ........ ( kết luận)
b) x^2 - ( 30 - 2 ) + 2m^2 - m + 1 = 0
denta = ( 3m - 2)^2 - 4 * 1 * ( 2m^2 - m + 1) = 9m^2 -12m + 4 - 8m^2 + 4m - 4 = m^2 - 8m = m( m - 8 )
Phương trình có nghiệm khi denta > hoặc = 0
=> m( m - 8 ) > hoặc = 0
m > hoặc = 0 và m - 8 > hoặc = 0
<=> Hoặc m < hoặc = 0 và m - 8 < hoặc = 0 ( dừng dấu ngoặc vuông để ngoặc giữa 2 dòng này nhé)
m > hoặc = 0 và m > hoặc = 8
<=> hoặc m< hoặc = 0 và m < hoặc = 8 ( giống trên )
m > hoặc = 8
<=> hoặc m < hoặc = 0
Vậy với m> hoặc = 8 hoặc m < hoặc = 0 thì phương trình đã cho có nghiệm
Theo Vi-et ta có x1 + x2 = 3m - 2
và x1 * x2 = 2m^2 - m + 1
P =x1^2 + x2^2 - 5x1x2 = ( x1 + x2 ) - 2x1x2 -5x1x2 = (x1 + x2 ) - 7x1x2 = 3m - 2 - 7 * ( 2m^2 - m + 1) ( do x1 +x2 = 3m + 2 và x1x2= 2m^2 - m + 1)
= 3m - 2 -14m^2 + 7m - 7 = -14m^2 - 10m - 9
Mk làm được đến đây thôi ak
có gì thì k cho mk nhé vis cái này mỏi lắm đấy *****
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
Bài 1: Tìm m mới đúng nhé!
\(2x^2+\left(2m-1\right)x+m-1=0\\ \Delta=b^2-4ac=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\forall m\)
Theo hệ thức Vi - ét: \(\left\{ \begin{array}{l} {x_1} + {x_2} = \dfrac{{ - b}}{a} = \dfrac{{ - \left( {2m - 1} \right)}}{2} = \dfrac{{ - 2m + 1}}{2}\\ {x_1}{x_2} = \dfrac{c}{a} = \dfrac{{m - 1}}{2} \end{array} \right. \)
Theo đề bài ta có:
\( 4x_{_1}^2 + 4x_2^2 + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left( {x_1^2 + x_2^2} \right) + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left[ {{{\left( {\dfrac{{ - 2m + 1}}{2}} \right)}^2} - 2\left( {\dfrac{{m - 1}}{2}} \right)} \right] + 2\left( {\dfrac{{m - 1}}{2}} \right) = 1\\ \Leftrightarrow 4{m^2} - 7m + 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l} m = 1\\ m = \dfrac{3}{4} \end{array} \right. \)
Vậy ...
Bài 2:
\(a)x^2+\left(m+2\right)x+m-1=0\\ \Delta=b^2-4ac=\left(m+2\right)^2-4.1.\left(m-1\right)=m^2+8\ge0\forall m\)
b) Theo hệ thức Vi - ét: \(\left\{ \begin{array}{l} {x_1} + {x_2} = \dfrac{{ - b}}{a} = - \left( {m + 2} \right) \\ {x_1}{x_2} = \dfrac{c}{a} = m - 1 \end{array} \right. \)
Theo đề bài ta có:
\( A = x_1^2 + x_2^2 - 3{x_1}{x_2}\\ A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - 3{x_1}{x_2}\\ A = {\left[ { - \left( {m + 2} \right)} \right]^2} - 5\left( {m - 1} \right)\\ A = {m^2} + 4m + 4 - 5m + 5\\ A = {m^2} - m + 9\\ A = \left( {{m^2} - 2.m.\dfrac{1}{2} + \dfrac{1}{4}} \right) - \dfrac{1}{4} + 9\\ A = {\left( {m - \dfrac{1}{2}} \right)^2} + \dfrac{{35}}{4} \ge \dfrac{{35}}{4} \)
Vậy \({A_{\min }} = \dfrac{{35}}{4} \Leftrightarrow m - \dfrac{1}{2} = 0 \Leftrightarrow m = \dfrac{1}{2} \)
a)Nếu m=0 thì pt\(\Rightarrow-x-2=0\Rightarrow x=-2\)
\(\Rightarrow\)Pt có nghiệm duy nhất
\(\Rightarrow m=0\left(loại\right)\)
Nếu \(m\ne0\) thì pt có hai nghiệm
\(\Leftrightarrow\Delta\ge0\Rightarrow\left(2m+1\right)^2-4\cdot m\cdot\left(m-2\right)\ge0\)
\(\Rightarrow4m^2+4m+1-4m^2+8m\ge0\)
\(\Rightarrow m\ge-\dfrac{1}{12}\) thì pt có hai nghiệm \(x_1,x_2\)
cho em xin thêm câu b ạ