K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

bạn chịu khó gõ link này lên google nhé !

https://olm.vn/hoi-dap/detail/216323474773.html

31 tháng 3 2020

hoang lam             

ui  chết gõ  nhầm link r :((

8 tháng 3 2022

Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt 
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0

a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)

\(=4m^2-4m+1-4m+4=4m^2-8m+5\)

\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì m-1<0

hay m<1

16 tháng 2 2022

a)Nếu m=0 thì pt\(\Rightarrow-x-2=0\Rightarrow x=-2\)

\(\Rightarrow\)Pt có nghiệm duy nhất

\(\Rightarrow m=0\left(loại\right)\)

Nếu \(m\ne0\) thì pt có hai nghiệm

\(\Leftrightarrow\Delta\ge0\Rightarrow\left(2m+1\right)^2-4\cdot m\cdot\left(m-2\right)\ge0\)

\(\Rightarrow4m^2+4m+1-4m^2+8m\ge0\)

\(\Rightarrow m\ge-\dfrac{1}{12}\) thì pt có hai nghiệm \(x_1,x_2\)

16 tháng 2 2022

cho em xin thêm câu b ạ

 

23 tháng 4 2022

\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)

\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)

\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)

27 tháng 4 2020

2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)

Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2

Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )

Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng 

Nếu m > -4 thì  ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)

Ta được : \(-4< m\le\frac{-3}{2}\)

Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)

\(x^2-2\left(m-1\right)x-2m=0\)

\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)

\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

 

3 tháng 3 2023

\(mx^2-2\left(m-1\right)x-4=0\)

Để pt có nghiệm kép thì \(\Delta=0\)

\(\Rightarrow\left[-2\left(m-1\right)\right]^2-4m\left(-4\right)=0\)

\(\Rightarrow4\left(m-1\right)^2+16m=0\)

\(\Rightarrow4\left(m^2-2m+1\right)+16m=0\)

\(\Rightarrow4m^2-8m+4+16m=0\)

\(\Rightarrow4m^2+8m+4=0\)

\(\Rightarrow4m^2+4m+4m+4=0\)

\(\Rightarrow4m\left(m+1\right)+4\left(m+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}4m+4=0\\m+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=-1\\m=-1\end{matrix}\right.\)

Vậy để pt có nghiệm kép thì \(m=-1\)