Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì pt luôn có nghiệm x1, x2 với mọi m nên theo hệ thức Vi-et ta có:x1+x2=m+1 và x1.x2=-6.Biểu thức cần tìm là x1.x2=-6
Xét
\(\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m+1\right)=m^2-6m+9-m^2-1=-6m+7\ge0\)
\(\Rightarrow m\le\frac{7}{6}\)
Theo Viete ta có:\(x_1+x_2=\frac{2\left(m-3\right)}{m-1}\left(1\right);x_1x_2=\frac{m+1}{m-1}\)
\(\Leftrightarrow x_1x_2\left(m-1\right)=m+1\Leftrightarrow x_1x_2m-m=1+x_1x_2\)
\(\Leftrightarrow m\left(x_1x_2-1\right)=1+x_1x_2\Leftrightarrow m=\frac{1+x_1x_2}{x_1x_2-1}\)
Thay vào ( 1 ) rồi rút gọn là OK nhá,nhác ko muốn tính :))
ĐK:\(m\ne1\)
Phương trình có 2 nghiệm \(\Leftrightarrow\)đen-ta\(\ge0.\)
\(\Leftrightarrow4m^2-24m+36-4m^2+4\ge0.\)
\(\Leftrightarrow-24m+40\ge0.\)
\(\Leftrightarrow m\le\frac{5}{3}.\)
Học tốt
ý 2 nek: áp dụng hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{2m-6}{m-1}\\x_1x_2=\frac{m+1}{m-1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2-\frac{4}{m-1}\\x_1x_2=1-\frac{2}{m-1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2-\frac{4}{m-1}\\2x_1x_2=2-\frac{4}{m-1}\end{cases}}\)
x1+x2-2x1x2=0.
vậy x1,x2 độc lập đối với m
học tốt
Bài 1:
Với $x_1,x_2$ là hai nghiệm của phương trình đã cho, ta áp dụng hệ thức Viete có: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-1\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x_1+x_2+2=2m\\ x_1x_2+1=m^2\end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} (x_1+x_2+2)^2=4m^2\\ 4(x_1x_2+1)=4m^2\end{matrix}\right.\)
\(\Rightarrow (x_1+x_2+2)^2=4(x_1x_2+1)\)
\(\Leftrightarrow x_1^2+x_2^2+2x_1x_2+4(x_1+x_2)+4=4x_1x_2+4\)
\(\Leftrightarrow x_1^2+x_2^2-2x_1x_2+4(x_1+x_2)=0\)
Đây chính là hệ thức cần tìm
Bài 2:
Áp dụng hệ thức Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-3m\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x_1+x_2+2=2m(1)\\ x_1x_2=m^2-3m\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} (x_1+x_2+2)^2=4m^2\\ 4x_1x_2=4m^2-12m\end{matrix}\right.\) \(\Rightarrow 12m=(x_1+x_2+2)^2-4x_1x_2(2)\)
Từ \((1); (2)\Rightarrow (x_1+x_2+2)^2-4x_1x_2=6(x_1+x_2+2)\)
\(\Leftrightarrow x_1^2+x_2^2-2x_1x_2-2(x_1+x_2)-8=0\)
Đây chính là biểu thức cần tìm.
lo hbfbekef evef
frgrgthtgr
t
gr
grgrgrgfrgrf
r
g
rg
r
g
r
gr
f
r
r
br
g
r
gr
gr
grg
r
g
eh
h
h
t
tt
t
t
thr
htr
htht
rh
ththt
ht
ht
h
h
ht
ht
ht
h
frorgew
rnngerjn griigrnbkrtgnngnrrkvggmbemfeegnv4f
v
r
re
eb
tg
bet
eb
tìm đk m khác 0
đenta' = (m+1)2-m2-3m= 2m-2 >0 (=) m>1
áp dụng hệ thức vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}=2+\frac{1}{m}\\x_1.x_2=\frac{m+3}{m}=1+\frac{3}{m}\end{cases}}\)
=) x1x2 - 3(x1+x2)=-5