Mùa xuân ở hội Lim (tỉnh Bắc Ninh) thường có trò chơi đu. Khi người c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

Sách Giải Bài Tập Toán Lớp 11 Luyện Tập (trang 46-47) (Nâng Cao)

Tham khảo. 

4 tháng 11 2019

https://sachgiaibaitap.com/sach_giai/giai-toan-lop-11-nang-cao-luyen-tap-trang-46-47/

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

+) Khi khoảng cách từ người chơi đu đến vị trí cân bằng là 3m thì h = 3.

Khi đó

 \(\begin{array}{l}3 = \left| d \right| = \left| {3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right]} \right|\\ \Rightarrow \left[ \begin{array}{l}3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] = 3\\3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] =  - 3\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] = 1\\\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] =  - 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] = \cos 0\\\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] = \cos \pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{3}\left( {2t - 1} \right) = k2\pi \\\frac{\pi }{3}\left( {2t - 1} \right) = \pi  + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = \frac{{6k + 1}}{2}\\t = 3k + 2\end{array} \right.;k \in Z\end{array}\)

+) Khi khoảng cách từ người chơi đu đến vị trí cân bằng là 0m thì h = 0.

Khi đó

\(\begin{array}{l}0 = \left| d \right| = \left| {3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right]} \right|\\ \Rightarrow 3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] = 0\\ \Leftrightarrow \cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] = 0\\ \Leftrightarrow \cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] = 0\\ \Leftrightarrow \cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right] = \cos \frac{\pi }{2}\\ \Leftrightarrow \frac{\pi }{3}\left( {2t - 1} \right) = \frac{\pi }{2} + k\pi \\ \Leftrightarrow t = \frac{5}{4} + \frac{{3k}}{2};k \in Z\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Vật đi qua vị trí cân bằng thì x = 0

Khi đó

 \(\begin{array}{l}2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \\\Leftrightarrow t =   \frac{2\pi }{15} +  \frac{{k\pi }}{5}  ;k \in Z\end{array}\)

Do khoảng thời gian từ 0 đến 6 giây nên \(t \in \left[ {0;6} \right]\) 

 \(\begin{array}{l}0 \le \ \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le \ 6;k \in Z\\ \Rightarrow  \frac{-2 }{3}\le \ k \le \ \frac{90 - 2\pi}{3\pi};k \in Z\end{array}\)

Do \(k \in Z\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\)

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Khi: \(s =  - 5\sqrt 3 \;\)thì \(10sin\left( {10t + \frac{\pi }{2}} \right) =  - 5\sqrt 3 \; \Leftrightarrow sin\left( {10t + \frac{\pi }{2}} \right) =  - \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l} \Leftrightarrow sin\left( {10t + \frac{\pi }{2}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}10t + \frac{\pi }{2} =  - \frac{\pi }{3} + k2\pi \\10t + \frac{\pi }{2} = \pi  + \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t =  - \frac{\pi }{{12}} + k\frac{\pi }{5}\\t = \frac{\pi }{{12}} + k\frac{\pi }{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy \(t =  \pm \frac{\pi }{{12}} + k\frac{\pi }{5},k \in \mathbb{Z}\) là giá trị cần tìm.

21 tháng 2 2019

Đáp án B

Số phần tử không gian mẫu bằng 7 3  và số kết quả thuận lợi cho biến cố bằng 7.6.5

và xác suất cần tính bằng 7 . 6 . 5 7 3 = 30 49

8 tháng 11 2016

* 7.7.7 = 73 = 343

* \(A\frac{3}{7}=210\)

Do đó : \(P\left(A\right)=\frac{210}{343}=\frac{30}{49}\)

17 tháng 11 2016

cậu giải được bài này thì cậu học 11 = tuổi Bình , vậy sao xưng chị (phía trên )?+!