Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là sản ppham xưởng sản xuất trong 1 ngày theo kế hoạch (x>0)
=>Số ngày theo kế hoạch là :\(\frac{110}{x}\)
Số ngày thực tế là \(\frac{1100}{x+5}\)theo gia thiet cua bai toan ta co :
\(\frac{1100}{x}-\frac{1100}{x+5}=2\)
<=>1100(x+5)-1100x=2x(x+5)
<=>2x^2+10x-5500=0
<=>x=50hay x=-55 loai
Vậy theo kế hoạch mỗi ngày phân xưởng phải sản xuất là 50 sản phẩm
Gọi số sản phẩm mà phân xưởng làm trong 1 ngày là x ( x > 0 )
=> Số ngày quy định = \(\frac{1100}{x}\)( ngày )
Mỗi ngày phân xưởng sản xuất vượt mức 5 sản phẩm
=> Số ngày hoàn thành = \(\frac{1100}{x+5}\)( ngày )
Vì thế kế hoạch hoàn thành sớm hơn quy định 2 ngày
=> Ta có phương trình : \(\frac{1100}{x}-\frac{1100}{x+5}=2\)
\(\Leftrightarrow\frac{1100\left(x+5\right)}{x\left(x+5\right)}-\frac{1100\cdot x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)
\(\Leftrightarrow1100x+5500-1100x=2x^2+10x\)
\(\Leftrightarrow2x^2+10x-1100x-5500+1100x=0\)
\(\Leftrightarrow2x^2+10x-5500=0\)
\(\Delta'=b'^2-ac=5^2-2\cdot\left(-5500\right)=25+11000=11025\)
\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-5+\sqrt{11025}}{2}=50\\x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-5-\sqrt{11025}}{2}=-55\end{cases}}\)
x > 0 => x = 50
Vậy theo kế hoạch , mỗi ngày phân xưởng sản xuất 50 sản phẩm
Gọi số chai nước rửa tay mà mỗi giờ xưởng phải làm theo kế hoạch là x (chai, x>0)
Theo bài ra:
Theo dự định xưởng phải sản xuất 280 chai trong 1 thời gian quy định =>Thời gian xưởng hoàn thành xong:\(\frac{280}{x}\)(h)
Theo thực tế mỗi giờ xưởng sản xuất thêm 5 chai so với kế hoạch =>Số chai nước rửa tay mà mỗi giờ xưởng phải làm là x+5(chai)
Xưởng còn sản xuất được thêm 20 chai nước rửa tay nữa=>Thời gian xưởng hoàn thành xong:\(\frac{280+20}{x+5}\)=\(\frac{300}{x+5}\)(h)
Xưởng hoàn thành công việc trước 2(h) so với thực tế
=>\(\frac{280}{x}-\frac{300}{x+5}=2\)
=>\(\frac{280\left(x+5\right)}{x\left(x+5\right)}-\frac{300x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)
=>\(280\left(x+5\right)-300x=2x\left(x+5\right)\)
=>\(280x+1400-300x=2x^2+10x\)
=>\(2x^2+10x-280x-1400+300x=0\)
=>\(2x^2+30x-1400=0\)
=>\(\orbr{\begin{cases}x=20\\x=-35\end{cases}}\)(\(x=-35\)không thỏa mãn đk x>0 ;\(x=20\)thỏa mãn điều kiện x>0)
Vậy theo kế hoạch mỗi giờ xưởng đó làm 20 chai nước rửa tay
Lời giải:
Gọi thời gian dự kiến là $a$ ngày thì năng suất dự kiến là $\frac{130}{a}$ sản phẩm / ngày.
Theo bài ra ta có:
Năng suất thực tế: $\frac{130}{a}+2$
Thời gian thực tế: $a-2$
Sản lượng thực tế: $(\frac{130}{a}+2)(a-2)=130+2$
$\Leftrightarrow a-\frac{130}{a}=3$
$\Leftrightarrow a^2-3a-130=0$
$\Rightarrow a=13$ (chọn) hoặc $a=-10$ (loại)
Vậy thời gian dự kiến là $13$ ngày.
Gọi số sản phẩm theo kế hoạch 1 ngày phân xưởng phải sx là x (sản phẩm) . ĐK 0 < x < 1100
Thời gian hoàn thành kế hoạch theo quy định là \(\frac{1100}{x}\)(ngày)
Số sản phẩm mỗi ngày xưởng thực hiện là x + 5 (sản phẩm)
Thời gian xưởng thực hiện là \(\frac{1100}{x+5}\)(ngày)
Vì xưởng hoàn thành kế hoạch sớm hơn quy định 2 ngày , ta có pt
=>\(\frac{1100}{x}-2=\frac{1100}{x+5}\)
=>\(1100\left(x+5\right)-2x\left(x+5\right)=1100x\)
<=>\(2x^2+10x-5500=0\)
=>\(\orbr{\begin{cases}x_1=50\left(tm\right)\\x_2=-55\left(k^0tm\right)\end{cases}}\)
Vậy theo kế hoạch mỗi ngày xưởng phải sx 50 sản phẩm
gọi số sản phẩ mỗi ngày là x(sản phẩm)(0<x<1100,x\(\in N\))
gọi thời gian làm dự định là y(ngày)(y>0)
=>hệ pt:\(\left\{{}\begin{matrix}xy=1100\\y-\dfrac{1100}{x+5}=2\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}y=\dfrac{1100}{x}\\\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(1\right)\end{matrix}\right.\)
*giải pt(1)\(=>\left\{{}\begin{matrix}x=50\left(TM\right)\\x=-55\left(loai\right)\end{matrix}\right.\)
Vậy....
Gọi số sản phẩm họ làm trong 1 ngày theo kế hoạch là x
Gọi số sản phẩm họ làm trong 1 ngày thực tế là y
(sản phẩm/ngày; x; y \(\in N\)*)
Do thực tế, mỗi ngày họ vượt mức 5 sản phẩm => Ta có phương trình:
y - x = 5 (1)
Thời gian họ sản xuất theo kế hoạch là \(\dfrac{1100}{x}\) (ngày)
Thời gian họ sản xuất thực tế là \(\dfrac{1100}{y}\) (ngày)
Do phân xưởng đó hoàn thành kế hoạch sớm hơn 2 ngày => Ta có phương trình:
\(\dfrac{1100}{x}-\dfrac{1100}{y}=2\)
<=> \(\dfrac{1100y-1100x-2xy}{xy}=0\)
<=> \(1100\left(y-x\right)-2xy=0\)
<=> \(5500-2xy=0\)
<=> \(xy=2750< =>x=\dfrac{2750}{y}\)
Thay x = \(\dfrac{2750}{y}\) vào phương trình (1), ta có:
\(y-\dfrac{2750}{y}=5\)
<=> \(y^2-5y-2750=0\)
<=> (y-55)(y+50) = 0
<=> \(\left[{}\begin{matrix}y=55\left(c\right)\\y=-50\left(l\right)\end{matrix}\right.\)
<=> x = 50 (c)
Theo kế hoạch, mỗi ngày phân xưởng sản xuất được 50 sản phẩm
Gọi x là số bộ quần áo phân xưởng được giao làm
Theo đề ta có pt
\(\frac{x}{28}+12=\frac{x+16}{26}\)
\(13x+4368=14x+224\)
\(x=4144\)
Gọi số sp phải sản xuất mõi ngày theo kế hoạch là x (x>0; x∈N)(sp)
Thời gian hoàn thành công việc theo kế hoạch là : \(\dfrac{1100}{x}\left(ngày\right)\)
Số sp làm trong 1 ngày thực tế là: x+5(sp)
Thời gian hoàn thành sp thực tế là: \(\dfrac{1100}{x+5}\)(ngày)
Vì hoàn thành sớm hơn kes hoạch 2 ngày nên ta có PT:
\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)
⇔\(1100x+5500-1100x=2x^2+10x\)
⇔\(-2x^2-10x+5500=0\)
⇔\(\left(x-50\right)\left(x+55\right)=0\)
⇔\(\left[{}\begin{matrix}x=50\left(TM\right)\\x=-55\left(Loại\right)\end{matrix}\right.\)
Vậy trong 1 ngày dội phải sản xuất 50 sp theo kế hoạch
Bài 21:
Gọi x (sản phẩm/giờ) là năng suất dự kiến ban đầu của người đó \(\left(x\inℕ^∗\right)\)
=> x + 2 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ta có phương trình sau:
\(\frac{150}{x}-\frac{1}{2}-2=\frac{150-2x}{x+2}\)
\(\Leftrightarrow300\left(x+2\right)-x\left(x+2\right)-4x\left(x+2\right)=2\left(150-2x\right)x\)
\(\Leftrightarrow300x+600-x^2-2x-4x^2-8x=300x-4x^2\)
\(\Leftrightarrow x^2+10x-600=0\)
\(\Leftrightarrow\left(x-20\right)\left(x+30\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\x+30=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-30\left(ktm\right)\end{cases}}\)
Vậy ban đầu năng suất người đó là 20 (sản phẩm/giờ)
Bài 22:
Gọi x (sản phẩm/giờ) là năng suất dự kiến của người đó \(\left(x\inℕ^∗;x< 20\right)\)
=> x + 1 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ra ta có phương trình:
\(\frac{80}{x+1}-\frac{1}{5}=\frac{72}{x}\)
\(\Leftrightarrow400x-x\left(x+1\right)=360\left(x+1\right)\)
\(\Leftrightarrow400x-x^2-x=360x+360\)
\(\Leftrightarrow x^2-39x+360=0\)
\(\Leftrightarrow\left(x-15\right)\left(x-24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=24\left(ktm\right)\end{cases}}\)
Vậy năng suất ban đầu là 15 sp/giờ
Ms lớp 8 nhg lm thử hoii
Gọi số sản phẩm lm trong 1 ngày dự định là x(sản phẩm)
Số sản phẩm thực tế lm trong 1 ngày : x+10(sản phẩm)
Tổng sản phẩm thực tế: 600+50=650(sản phẩm)
Ta có pt:
\(\dfrac{600}{x}-\dfrac{650}{x+10}=2\)
\(\dfrac{600\left(x+10\right)}{x\left(x+10\right)}-\dfrac{650x}{x\left(x+10\right)}\)\(=\dfrac{2x\left(x+10\right)}{x+10}\)
\(600x+6000-650x=2x^2+20x\)
\(-50x+6000=2x^2+20x\)
\(x^2+35x=3000\)
\(x=40\)
=> Thời gian sx theo hợp đồng= \(\dfrac{600}{40}\)=15 ngày