Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là số bộ quần áo phân xưởng được giao làm
Theo đề ta có pt
\(\frac{x}{28}+12=\frac{x+16}{26}\)
\(13x+4368=14x+224\)
\(x=4144\)
số áo xưởng may phải may theo kế hoạch đã định là:x(x thuộc n*)
-số chiếc mỗi ngày theo dự định là;x/26
-số chiếc mỗi ngày thực tế là:x+104/24
do cải tiến kĩ thuật nên mỗi ngày đã may vượt mực 6 chiếc. Do đó chẳng những đã hoàn thành theo kế hoạch đã định trong 24 ngày, mà còn may thêm được 104 chiếc nữa nên ta có phương trình:
x/26+6=x+104/24
=> x+156/26=x+104/24
=> 24x+3744=26x+2704
=> -2x=-1040
=> x=520 (t/m)
Vậy số áo xưởng may phải may theo kế hoạch đã định là:520 áo
- Gọi số áo phải may theo kế hoạch trong 1 ngày là x \(\left(x\in N,x>0\right)\)
- Thời gian quy định may xong 3000 áo là \(\frac{3000}{x}\)( ngày )
- Số áo thực tế may được trong 1 ngày là : x + 6 ( áo )
- Thời gian may xong 2650 áo là \(\frac{2650}{x+6}\)( ngày )
- Vì xưởng may xong 2650 áo trước khi hết han 5 ngày nên ta có phương trình :
\(\frac{3000}{x}-5=\frac{2650}{x+6}\)
Giải PT trên :
\(3000\left(x+6\right)-5x\left(x+6\right)=2650x\)hay \(x^2-64x-3600=0\)
\(\Delta'=32^2+3600=4624\); \(\sqrt{\Delta'}=68\)
\(x_1=32+68=100\); \(x_2=32-68=-36\)
\(x_2=-36\left(KTM\right)\)
vậy theo kế hoạch , mỗi ngày xưởng đó phải may xong 100 áo
Gọi số áo mà xưởng may trong một ngày theo kế hoạch là x ( x > 0 )
Số ngày may xong 3000 áo là \(\frac{3000}{x}\)( ngày )
Để hoàn thành sớm kế hoạch, mỗi ngày xưởng đã may thêm nhiều hơn 6 áo
=> Thực tế mỗi xưởng đã may được ( x + 6 ) áo
5 ngày trước khi hết hạn là \(\frac{3000}{x}-5\)( ngày )
Thời gian xưởng may xong 2650 áo là \(\frac{2650}{x+6}\)( ngày )
5 ngày trước khi hết hạn = thời gian xưởng may xong 2650 áo
=> Ta có phương trình :\(\frac{3000}{x}-5=\frac{2650}{x+6}\)
<=> \(\frac{3000}{x}-5-\frac{2650}{x+6}=0\)
<=> \(\frac{3000\left(x+6\right)}{x\left(x+6\right)}-\frac{5x\left(x+6\right)}{x\left(x+6\right)}-\frac{2650x}{x\left(x+6\right)}=0\)
<=> \(\frac{3000x+18000-5x^2-30x-2650x}{x\left(x+6\right)}=0\)
<=> \(\frac{-5x^2+320x+18000}{x\left(x+6\right)}=0\)
=> -5x2 + 320x + 18000 = 0
Δ' = b'2 - ac = 1602 - (-5).18000 = 115 600
Δ' > 0 nên phương trình có hai nghiệm phân biệt :
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=\frac{-160+\sqrt{115600}}{-5}=-36\left(loai\right)\)
\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=\frac{-160-\sqrt{115600}}{-5}=100\left(nhan\right)\)
Vậy theo kế hoạch, mỗi ngày xưởng phải may 100 áo
Bài 1 :
Gọi số người của đội là \(x\) người \(\left(x\inℕ^∗\right)\)
Thời gian làm theo kế hoạch là \(\frac{420}{x}\) ngày
Số người lúc sau là \(x+5\) người
Thời gian hoàn thành lúc sau là \(\frac{420}{x+5}\) ngày
Vì thời gian giảm 7 ngày nên ta có phương trình :
\(\frac{420}{x}-7=\frac{420}{x+5}\)
\(\Leftrightarrow420\left(x+5\right)-7x\left(x+5\right)=420x\)
\(\Leftrightarrow420x+2100-7x^2-35x-420x\)
\(\Leftrightarrow7x^2+35x-2100=0\)
\(\Leftrightarrow x^2+5x-300=0\)
\(\Leftrightarrow\left(x+20\right)\left(x-15\right)=0\)
\(\Leftrightarrow x=15\) \(\left(x\inℕ^∗\right)\)
Vậy số người của đội là 15 người.
Gọi x là tổng số áo mà phân xưởng phải may theo kế hoạch (x∈∈n*, cái áo)
Tổng số áo mà phân xưởng may trong thực tế là x+60
Số áo mỗi ngày phân xưởng may theo kế hoạch là 90
Số áo mà mỗi ngày phân xưởng may trong thực tế là 120
Thời gian mà phân xưởng đó may được theo kế hoạch là \(\frac{x}{90}\)
Thời gian mà phân xưởng đó may trong thực tế là \(\frac{x+60}{120}\)
Theo bài ra,ta có phương trình
\(\frac{x}{90}-9=\frac{x+60}{120}\)
\(⇔\frac{12x}{1080}-\frac{9×1080}{1080}=\frac{9(x+60)}{1080} \)
\(⇔ 12 x − 9 × 1080 = 9 ( x + 60 )\)
\(⇔ 12 x − 9720 = 9 x + 540\)
\(⇔ 12 x − 9 x = 540 + 9720\)
\(⇔ 3 x = 10260\)
\(⇔ x = 10260 ÷ 3\)
\(⇔ x = 3420\)
Vậy số tổng áo mà phân xưởng phải may theo kế hoạch là 3420 cái áo
bn ơi bn vào phần thống kê hỏi đáp ý có câu trl của mk
ở phần thứ 3 nhé
Gọi số chai nước rửa tay mà mỗi giờ xưởng phải làm theo kế hoạch là x (chai, x>0)
Theo bài ra:
Theo dự định xưởng phải sản xuất 280 chai trong 1 thời gian quy định =>Thời gian xưởng hoàn thành xong:\(\frac{280}{x}\)(h)
Theo thực tế mỗi giờ xưởng sản xuất thêm 5 chai so với kế hoạch =>Số chai nước rửa tay mà mỗi giờ xưởng phải làm là x+5(chai)
Xưởng còn sản xuất được thêm 20 chai nước rửa tay nữa=>Thời gian xưởng hoàn thành xong:\(\frac{280+20}{x+5}\)=\(\frac{300}{x+5}\)(h)
Xưởng hoàn thành công việc trước 2(h) so với thực tế
=>\(\frac{280}{x}-\frac{300}{x+5}=2\)
=>\(\frac{280\left(x+5\right)}{x\left(x+5\right)}-\frac{300x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)
=>\(280\left(x+5\right)-300x=2x\left(x+5\right)\)
=>\(280x+1400-300x=2x^2+10x\)
=>\(2x^2+10x-280x-1400+300x=0\)
=>\(2x^2+30x-1400=0\)
=>\(\orbr{\begin{cases}x=20\\x=-35\end{cases}}\)(\(x=-35\)không thỏa mãn đk x>0 ;\(x=20\)thỏa mãn điều kiện x>0)
Vậy theo kế hoạch mỗi giờ xưởng đó làm 20 chai nước rửa tay
Gọi x là sản ppham xưởng sản xuất trong 1 ngày theo kế hoạch (x>0)
=>Số ngày theo kế hoạch là :\(\frac{110}{x}\)
Số ngày thực tế là \(\frac{1100}{x+5}\)theo gia thiet cua bai toan ta co :
\(\frac{1100}{x}-\frac{1100}{x+5}=2\)
<=>1100(x+5)-1100x=2x(x+5)
<=>2x^2+10x-5500=0
<=>x=50hay x=-55 loai
Vậy theo kế hoạch mỗi ngày phân xưởng phải sản xuất là 50 sản phẩm
Gọi số sản phẩm mà phân xưởng làm trong 1 ngày là x ( x > 0 )
=> Số ngày quy định = \(\frac{1100}{x}\)( ngày )
Mỗi ngày phân xưởng sản xuất vượt mức 5 sản phẩm
=> Số ngày hoàn thành = \(\frac{1100}{x+5}\)( ngày )
Vì thế kế hoạch hoàn thành sớm hơn quy định 2 ngày
=> Ta có phương trình : \(\frac{1100}{x}-\frac{1100}{x+5}=2\)
\(\Leftrightarrow\frac{1100\left(x+5\right)}{x\left(x+5\right)}-\frac{1100\cdot x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)
\(\Leftrightarrow1100x+5500-1100x=2x^2+10x\)
\(\Leftrightarrow2x^2+10x-1100x-5500+1100x=0\)
\(\Leftrightarrow2x^2+10x-5500=0\)
\(\Delta'=b'^2-ac=5^2-2\cdot\left(-5500\right)=25+11000=11025\)
\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-5+\sqrt{11025}}{2}=50\\x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-5-\sqrt{11025}}{2}=-55\end{cases}}\)
x > 0 => x = 50
Vậy theo kế hoạch , mỗi ngày phân xưởng sản xuất 50 sản phẩm
Gọi x (áo) là số áo phải dệt theo kế hoạch (x , x > 0)
⇒ Số ngày dệt theo kế hoạch: x/30 (ngày)
Số thực tế thực tế làm được: x + 20 (áo)
⇒ Số ngày thực tế hoàn thành: (x + 20)/40 (ngày)
Theo đề bài, ta có phương trình:
x/30 - (x + 20)/40 = 3
⇔ 4x - 3(x + 20) = 3.120
⇔ 4x - 3x - 60 = 360
⇔ x = 360 + 60
⇔ x = 420 (nhận)
Vậy số áo thực tế xưởng dệt được là: 420 + 20 = 440 (áo)