K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

Đáp án C

Vận tốc lớn nhất của vật đạt được là  v m a x = 54 m / s .

30 tháng 7 2017

Đáp án C.

4 tháng 7 2019

Đáp án D

27 tháng 1 2018

29 tháng 3 2017

Em chỉ cần chú ý là bán \(\dfrac{1}{2}\) số còn lại mà đang còn dư 18 lít thì số còn lại sau khi bán một nửa là 36 lít. Từ đó suy ra cả thùng chưa bán có tất cả 72 lít

29 tháng 3 2017

Sau khi bán nửa lít thì còn lại số lít là :

18 : \(\dfrac{1}{2}\) = 36 lít

Vì bán 1 nửa tương ứng với 36 lít , vậy :

36 . 2 = 72 lít

Đ/s : 72 lít

GV
21 tháng 4 2017

Vận tóc của chuyển động là:

\(v=s'=12t-3t^2\)

Ta có \(v'=12-6t\)

\(v'=0\) khi t = 2 và \(v'\) đổi dấu từ dương sang âm khi đi qua t=2. Vậy \(v\) đạt giá trị lớn nhất khi t = 2.

3 tháng 9 2017

v=s′=−t2+12tv=s′=−t2+12t

Vậy trong thời gian 9s, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật là vmax=36m/s

22 tháng 11 2016

1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy

2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15

3,

*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)

*) 2+3=8 hay 2.(2+3)-2=8

4+5=32 hay 4.(4+5)-4=32

5+8=60 hay 5.(5+8)-5=60

6+7=72 hay 6.(6+7)-6=72

7+8= 7.(7+8)-7=98

 

23 tháng 11 2016

HACK

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Thề là bài của bạn Kirito làm mình không hiểu gì hết. Đáp án cuối cùng của bạn cũng sai nốt, tính tích phân thì ra giá trị cụ thể chứ làm gì còn $c$

Lời giải:

Ta có \(I=\underbrace{\int ^{1}_{0}x^2dx}_{A}+\underbrace{\int ^{1}_{0}x^3\sqrt{1-x^2}dx}_{B}\)

Xét \(A=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^3}{3}=\frac{1}{3}\)

Xét \(B=\frac{1}{2}\int ^{1}_{0}x^2\sqrt{1-x^2}d(x^2)\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow x^2=1-t^2\). Khi đó

\(B=-\frac{1}{2}\int ^{1}_{0}(1-t^2)td(1-t^2)=\int ^{1}_{0}t^2(1-t^2)dt=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{t^3}{3}-\frac{t^5}{5} \right )=\frac{2}{15}\)

\(\Rightarrow I=A+B=\frac{7}{15}\)

10 tháng 2 2017

Chắc bạn học lớp 12 nhỉ???hihi

Đ/A:

\(I=\int\limits^1_0x^2\left(1+x\sqrt{1-x^2}\right)dx=\int\limits^1_0x^2dx+\int\limits^1_0x^3\sqrt{1-x^2}dx\)

\(I_1=\int\limits^1_0x^2dx=\frac{x^3}{3}\)|\(_0^1=\frac{1}{3}\)

\(I_2=\int\limits^1_0x^3\sqrt{1-x^2}dx\)

Đặt \(t=\sqrt{1-x^2}\Rightarrow x^2=1-t^2\Rightarrow xdx\Rightarrow tdt\)

Đổi cận: \(x=0\Rightarrow t=1;x=1\Rightarrow t=0\)

\(\Rightarrow I_2=-\int\limits^1_0\left(1-t^2\right)t^2dt=\int\limits^1_0\left(t^2-t^4\right)dt=\left(\frac{t^3}{3}-\frac{t^5}{5}\right)\)|\(_0^1=\frac{2}{15}\)

Vậy \(I=I_1+I_2=\frac{7}{5}\)

Đặt \(u=x\Rightarrow du=dx;dv=c^{2x}\) chọn \(v=\frac{1}{2}c^{2x}\)

\(\Rightarrow\int\limits^1_0xc^{2x}dx=\frac{x}{2}c^{2x}\)|\(_0^1-\frac{1}{2}\int\limits^1_0c^{2x}dx=\frac{c^2}{2}-\frac{1}{4}c^{2x}\)|\(_0^1=\frac{c^2+1}{4}\)

Vậy \(I=\frac{3c^2+7}{2}\)