Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O D H P Q I
a. Xét tứ giác ADOH có:\(\widehat{ODA}=90^o;\widehat{DAH}=90^o;\widehat{OHA}=90^o\)
\(\Rightarrow\) ADOH là hình chữ nhật ( tứ giác có 3 góc vuông )
b. Ta có: P là điểm đối cứng của D qua O ⇒ O là trung điểm của DP(1)
Q là điểm đối xứng của H qua O ⇒ O là trung điểm của QH(2)
Ta có: \(AB\perp AC;QH\perp AC̸\) ⇒ AB//QH
Lại có: DB//QO;DB⊥DP⇒QH⊥DP(3)
Từ(1),(2),(3)⇒Tứ giác QDHP là hình thoi(Tứ giác có 2 đường chéo vuông góc và cắt nhau tại trung điểm mỗi đường)
Câu 7: Đổi 30 phút=\(\frac{1}{2}h\)
Gọi quãng đường cần đi là S ( tính theo km, và S>0 )
Khi đó thời gian dự định cần đi là:
\(\frac{S}{30}\)(h)
Thời gian đi nửa quãng đường trước là:
\(\frac{S}{2}\): 30 =\(\frac{S}{60}\)(h)
Thời gian đi nửa quãng đường sau là:
\(\frac{S}{2}:40=\frac{S}{80}\)(h)
Do thời gian giảm đi 30 phút nên:
\(\frac{S}{60}+\frac{S}{80}+\frac{1}{2}=\frac{S}{30}\)
<=> \(\frac{S}{240}=\frac{1}{2}\)
<=> S= 120 (km)
Vậy quãng đường cần tìm là 120 km
Bài 4:
Tổng số đo các góc ngoài của đa giác bằng \(360^0.\)
Theo đề bài ta có số đo một góc trong của đa giác đều là:
\(504^0-360^0=144^0.\)Gọi n là số cạnh của đa giác đều. Ta có số đo mỗi góc của đa giác đều bằng:
\(\frac{\left(n-2\right).180^0}{n}\)
\(\Rightarrow\frac{\left(n-2\right).180^0}{n}=144^0\) \(\Rightarrow\left(n-2\right).180^0=144^0.n\)\(\Rightarrow180^0.n-360^0=144^0.n\) \(\Rightarrow180^0.n-144^0.n=360^0\) \(\Rightarrow36.n=360^0\) \(\Rightarrow n=360^0:36\) \(\Rightarrow n=10\left(cạnh\right).\) Vậy đa giác đều cần tìm có 10 cạnh. Chúc bạn học tốt!
Bài 1:
a: BC=13cm
AM=6,5cm
b: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
c: Để ADME là hình vuông thì AM là tia phân giác của góc BAC
hay M là chân đường phân giác kẻ từ A xuống BC
Kẻ IG,IK,IH lần lượt vuông góc với AB,BC,AC
Kẻ MO,MD,ME lần lượt vuông góc với AB,BC,AC
Xét ΔBKI vuông tại K và ΔBGI vuông tại G có
BI chung
góc KBI=góc GBI
Do đó: ΔBKI=ΔBGI
Suy ra: IK=IG(1)
Xét ΔCKI vuông tại K và ΔCHI vuông tại H có
CI chung
góc KCI=góc HCI
Do dó: ΔCKI=ΔCHI
Suy ra: IK=IH(2)
Từ (1) và (2) suy ra IG=IH
mà I nằm trong ΔABC và IG,IH là các đường cao ứng với các cạnh AB,AC
nên AI là phân giác của góc BAC(3)
Xét ΔBOM vuông tại O và ΔBDM vuông tại D có
BM chung
góc OBM=góc DBM
Do đó: ΔBOM=ΔBDM
Suy ra: MO=MD(4)
Xét ΔMDC vuông tại D và ΔMEC vuông tại E có
CM chung
góc DCM=góc ECM
Do đó: ΔMDC=ΔMEC
Suy ra: MD=ME(5)
Từ (4) và (5) suy ra MO=ME
mà M nằm ngoài ΔABC và MO,ME là các đường cao ứng với các cạnh AB,AC
nên AM là phân giác của góc BAC(6)
Từ (3) và (6) suy ra A,I,M thẳng hàng
Số giáo viên đi tham quan là a (người), số học sinh là 250 -a (người)
Tiền vé của 1 học sinh tham quan là:
160 000 x (100% - 10%)= 144 000 (đồng)
Tổng tiền đi tham quan của cả trường là 3 624 000 đồng, nên ta có pt:
144 000 x (250 - a) + 160 000 x a = 3 624 000
Bị âm, em xem lại đề nha!