K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để cam nhiều hơn thì sẽ có 3 th:

TH1: 2 cam, 1 mận, 1 xoài

=>Có \(C^2_8\cdot5\cdot4=560\)

TH2: 3 cam, 1 xoài

=>Có \(C^3_8\cdot4=224\left(cách\right)\)

TH3: 3 cam, 1 mận

=>Có \(C^3_8\cdot5=280\left(cách\right)\)

=>n(A)=280+224+560=1064

\(n\left(\Omega\right)=C^4_{17}=2380\)

=>P(A)=1064/2380=38/85

8 tháng 4 2023

Có: `\Omega =C_24 ^5`

Gọi `A:` "Lấy được `5` quả cầu trong đó có ít nhất `1` quả cầu đỏ."

  `=>\overline{A}=C_17 ^5`

`=>P(A)=1-[C_17 ^5]/[C_24 ^5]=1297/1518`

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Việc chọn một quả dưa hấu hoặc một quả thanh long được thực hiện qua 2 phương án

Phương án 1: Chọn một quả dưa hấu, có 6 cách thực hiện

Phương án 2: Chọn một quả thanh long, có 15 cách thực hiện

Áp dụng quy tắc cộng, số cách chọn một quả dưa hấu hoặc một quả thanh long là

                             \(6 + 15 = 21\) (cách chọn)

b) Việc chọn một quả dưa hấu và một quả thanh long được thực hiện qua 2 công đoạn:

Công đoạn 1: Chọn một quả dưa hấu, có 6 cách thực hiện

Công đoạn 2: Chọn một quả thanh long, có 15 cách thực hiện

Áp dụng quy tắc nhân, số cách chọn một quả thanh long và một quả dưa hấu là

                             \(6.15 = 90\) (cách chọn)

19 tháng 11

easy

 

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_{13}^2.13\)

a) Biến cố “Ba quả bóng lấy ra cùng màu” xảy ra khi hai lần đều lấy ra bóng có cùng màu xanh, đỏ hoặc vàng. Số kết quả thuận lợi cho biến cố là \(C_5^2.5 + C_6^2.6 + C_2^2.2 = 142\)

Vậy xác suất của biến cố “Ba quả bóng lấy ra cùng màu” là \(P = \frac{{142}}{{13C_{13}^2}} = \frac{{71}}{{507}}\)

b) Số kết quả thuận lợi cho biến cố “Bóng lấy ra lần 2 là bóng xanh” là \(C_{13}^2.5\)

Vậy xác suất của biến cố “Bóng lấy ra lần 2 là bóng xanh” là \(P = \frac{{5C_{13}^2}}{{13C_{13}^2}} = \frac{5}{{13}}\)

c) Biến cố “Ba bóng lấy ra có ba màu khác nhau” xảy ra khi hai quả bóng lấy ra lần đầu là 2 màu khác nhau và quả bóng lấy lần 2 có màu còn lại. Số kết quả thuận lợi cho biến cố này là \(5.6.2.3 = 180\)

Vậy xác suất của biến cố “Ba bóng lấy ra có ba màu khác nhau” là \(P = \frac{{180}}{{13C_{13}^2}} = \frac{{30}}{{169}}\)

27 tháng 9 2023

Cái này nhân 3 TH thui 

VD (xanh+đỏ; vàng) ; (xanh+vàng; đỏ); (đỏ+vàng;xanh) nên x3 chứ không phải nhân 3! á em (câu c)

8 tháng 5 2023

`\Omega =C_20 ^2`

Gọi `A:` "Người thứ hai chọn được quả cầu cùng màu với người thứ nhất."

   `=>A=C_8 ^2+C_12 ^2`

 `=>P(A)=[C_8 ^2+C_12 ^2]/[C_20 ^2]=47/95`

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta thấy hai biến cố :”Hai quả bóng lây ra cùng màu” và “Hai quả bóng lấy ra khác màu” là hai biến cố đối

Suy ra xác suất của biến cố “Hai quả bóng lây ra cùng màu” là \(1 - 0,6 = 0,4\)

22 tháng 9 2018

Gọi x và y lần lượt là giá tiền mỗi quả quýt và mỗi quả cam. (x > 0; y > 0)

Vân mua 10 quả quýt, 7 quả cam hết 17800 đồng nên ta có:

     10x + 7y = 17800

Lan mua 12 quả quýt, 6 quả cam hết 18000 đồng nên ta có:

     12x + 6y = 18000

Từ đó ta có hệ:

Giải bài 3 trang 68 sgk Đại số 10 | Để học tốt Toán 10

Từ (2) rút ra được y = 3000 – 2x, thay vào (1) ta được :

     10x + 7.(3000 – 2x) = 17800

⇔ 10x + 21000 – 14x = 17800

⇔ 4x = 3200 ⇔ x = 800 (thỏa mãn)

Thay x = 800 vào y = 3000 – 2x ta được y = 1400 (thỏa mãn)

Vậy giá tiền một quả quýt là 800đ và giá tiền một quả cam là 1400đ.

20 tháng 11

Dì Ly mang 100000 đồng đi mua cam. Dì mua 8 quả cam, trung bình mỗi quả nặng 0,25 kg. Biết mỗi kg cam là 35000 đồng. Tính số tiền dì Ly còn lại sau khi mua cam\(\left[{}\begin{matrix}&&&&\\&&&&\end{matrix}\right.\begin{matrix}\\\\\\\end{matrix}\right.\)

22 tháng 8 2017

Đặt số cam là x, quýt là y (x,y>0)

=>\(\left\{{}\begin{matrix}\dfrac{2x}{5}+\dfrac{4y}{7}=140\\\dfrac{5x}{6}+\dfrac{9y}{14}=215\end{matrix}\right.\)

bấm máy giải hệ

=>\(\left\{{}\begin{matrix}x=150\\y=140\end{matrix}\right.\)

Chia 16 số ra làm 3 tập:
A={1;4;7;10;13;16}; B={2;5;8;11;14}; C={3;6;9;12;15}

TH1: 1 số trong A, 1 số trong B, 1 số trong C

=>Có 6*5*5=150 cách

TH2: 3 số trong A

=>Có \(C^3_6=20\left(cách\right)\)

TH3: 3 số trong B hoặc C

=>Có \(C^3_5\cdot2=20\left(cách\right)\)

=>n(A)=20+20+150=190

\(n\left(omega\right)=C^3_{16}=560\)

=>P(A)=19/56