Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi 1 cạnh góc vuông là x ( cm) ( x > 0)
Cạnh huyền là x + 1 ( cm)
Áp dụng ĐL Pi ta go => cạnh góc vuông còn lại là \(\sqrt{\left(x+1\right)^2-x^2}=\sqrt{\left(x+1+x\right).\left(x+1-x\right)}=\sqrt{2x+1}\) (cm)
Theo bài cho ta có pt: x + \(\sqrt{2x+1}\) = x + 1 + 4
=> \(\sqrt{2x+1}\) = 5 => 2x + 1 = 25 => x = 12 ( cm)
Vậy 1 cạnh góc vuuong là 12 cm ; cạnh góc vuông còn lại là \(\sqrt{2.12+1}=5\) cm;
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử tam giác ABC có góc (BAC) = 90 °
Theo đề bài, ta có: BC – AB = 1 (cm) (1)
AB + AC – BC = 4 (cm) (2)
Từ (1) và (2) suy ra: BC – AB + AB + AC – BC = 4 + 1 = 5 (cm)
Theo định lí Pi-ta-go, ta có: B C 2 = A B 2 + A C 2 (3)
Từ (1) suy ra: BC = AB + 1 (4)
Thay (4) vào (3) ta có:
A B 2 + 1 2 = A B 2 + A C 2
⇔ A B 2 + 2 A B + 1 = A B 2 + 5 2
⇔ 2AB = 24 ⇔ AB = 12 (cm)
Thay AB = 12 (cm) vào (1) ta có: BC = 12 + 1 = 13 (cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bg
Gọi cạnh huyền của tam giác là a, hai cạnh góc vuông là b và c (\(a,b,c\inℕ^∗\))
Theo đề bài: a = c + 1 và b + c = a + 4
Xét b + c = a + 4:
Mà a = c + 1
=> b + c = c + 1 + 4
=> b + c = c + 5
=> b - 5 = c - c
=> b - 5 = 0
=> b = 5 (cm)
Theo định lý Pi - ta - go, trong một tam giác vuông, ta có:
a2 = b2 + c2
Vì a = c + 1
=> (c + 1)2 = 52 + c2
=> c2 + 2c + 1 = 25 + c2
=> 2c + 1 = 25
=> 2c = 24
=> c = 12 (cm)
Vậy các cạnh góc vuông của tam giác này là 5 cm và 12 cm
Bonus:
Cạnh huyền của góc vuông đó là: a = c + 1 = 12 + 1 = 13 (cm)
Vậy cạnh huyền của tam giác này là 13 cm
![](https://rs.olm.vn/images/avt/0.png?1311)
- Giả sử cạnh huyền BC > AB 1 cm , ta có :
BC - AB = 1
( AB + AC ) - BC = 4 cm
=> AC = 5cm
Ta có : \(\hept{\begin{cases}BC-AB=1\\BC^2=AB^2+AC^2\end{cases}}\)( đlí Py - ta - go )
BC - AB = 1 => BC = AB + 1
( AB + 1 )2 = AB2 + AC2
AB2 + 2AB + 1 = AB2 + AC2
2AB + 1 = AC2
2AB = AC2 - 1 = 52 - 1 = 24
\(\Rightarrow AB=\frac{24}{2}=12\Rightarrow BC=12+1=13\)
Vậy : AB = 12cm
AC = 5cm
BC = 13cm
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
![](https://rs.olm.vn/images/avt/0.png?1311)
X*(X-7)-(X-2)*(X-7+3)=10
=> X=18
vậy cạch lớn là 18 m and cạnh nhỏ =11 m
Gọi độ dài cạnh góc vuông nhỏ là x
Theo đề, ta có: x^2+64=(x+4)^2
=>8x+16=64
=>8x=48
=>x=8