Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Gọi x (cm), y (cm) là độ dài hai cạnh góc vuông của tam giác vuông. Điều kiện x > 0, y > 0.
Tăng mỗi cạnh lên 3 cm thì diện tích tăng them 36 cm2 nên ta được:
= + 36
Một cạnh giảm 2 cm, cạnh kia giảm 4 cm thì diện tích của tam giác giảm 36 cm2 nên ta được
= - 26
Ta có hệ phương trình
Giải ra ta được nghiệm x = 9; y = 12.
Vậy độ dài hai cạnh góc vuông là 9 cm, 12 cm.
Cho tam giác vuông có diện tích bằng 54 cm2 và tổng độ dài hai góc vuông bằng 21 cm. Tính độ dài cạnh huyền của tam giác vuông đã cho.
Gọi độ dài 1 cạnh góc vuông là x (x:cm ,x > 0)
Cạnh góc vuông còn lại là 21 – x (cm)
Ta có phương trình :x(21 - x) = 54 -x2 + 21x -108 =0x = 12 v x = 9
Độ dài 2 cạnh góc vuông là 12cm và 9 cm
( độ dài cạnh huyền là
Cạnh góc hình vuông còn lại là : 21 - x \((cm)\)
Ta có phương trình \(\frac{1}{2}\cdot x(21-x)=54\Leftrightarrow-x^2+21x-108=0\Leftrightarrow x=12\)và x = 9
Độ dài 2 cạnh góc vuông là : 12 cm và 9 cm
Độ dài cạnh huyền là : \(\sqrt{12^2+9^2}=15(cm)\)
gọi 2 canh tam giác là x và x+2
áp dụng định lí pytago ta có
x^2+(x+2)^2=10^2
suy ra x^2+x^2+4x+4=100
suy ra x=6 (vì x>0)
suy ra2 cạnh góc vuông là 6 và 8cm
Gọi số đo độ dài hai cạnh góc vuông của tam giác vuông đó là x(cm), y (cm)
( 0 < y < x < 10)
Hai cạnh góc vuông có độ dài hơn kém nhau 2cm nên ta được x – y = 2 , (1).
Theo định lý Pytago ta có: x 2 + y 2 = 10 2 = 100 ( 2 )
Từ (1) và (2) ta có hệ phương trình:
Từ (1) suy ra: x= y+ 2 thay vào (2) ta được:
( y + 2 ) 2 + y 2 = 100 ⇔ y 2 + 4 y + 4 + y 2 = 100 ⇔ 2 y 2 + 4 y − 96 = 0 hay y 2 + 2 y − 48 = 0
Giải ra ta được: y 1 = 6 ; y 2 = - 8 < 0 ( loại)
Với y= 6 suy ra x = 8.
Vậy độ dài các cạnh góc vuông của tam giác vuông là 6cm và 8cm.
Gọi 2 cạnh góc vuông lần lượt là a, b(cm)(a>b>0)
Theo bài ra ta có pt:
\(\left\{{}\begin{matrix}ab=24\\a-b=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2+b\right)b=24\\a=2+b\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b^2+2b-24=0\\a=2+b\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b=4\\b=-6\end{matrix}\right.\\a=2+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2+4\\b=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\)