Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
Gọi độ dài của tam giác vuông là x. Điều kiện x > 0.
Tỉ số giữa cạnh huyền và một cạnh góc vuông sẽ là x/15.
Theo bài ra ta có :
x/15=13/12 (=) 12x=13*15 (=) 12x = 195 (=) x=16,25
Vậy độ dài cạnh huyền là 16,25 cm
\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Xét ΔABC vuông tại A có sin C=AB/BC=5/13
nên góc C=22 độ
=>góc B=68 độ
AM=13/2=6,5cm
AH=5*12/13=60/13cm
A B C H 24 7
Cho tam giác ABC vuông tại A, AH là đường cao. AB = 24cm, AC = 7cm.
Áp dụng định lý Pytago ta có: \(BC=\sqrt{AC^2+AB^2}=\sqrt{7^2+24^2}=25.\)
Áp dụng hệ thức lượng ta có:
\(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{24.7}{25}=6.72\)
\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{7^2}{25}=1,96\)
\(\Rightarrow HB=BC-HC=25-1.96=23.04\)
Bài 1:
3 4 x y z
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Gọi 2 cạnh góc vuông là `AB,AC`, cạnh huyền là `BC`, đường cao `AH`.
Có: `(AB)/(AC)=3/7 = (3x)/(7x) (x>0)`
Áp dụng hệ thức lượng trong tam giác vuông ABC:
`1/(AH^2)=1/(AB^2)+1/(AC^2)`
`<=>1/(42^2)=1/(9x^2)+1/(49x^2)`
`=> x=2\sqrt58(cm)`
`=> AB=6\sqrt58, AC=14\sqty58 (cm)`
Áp dụng định lí Pytago:
`AB^2=HB^2+AH^2`
`<=> (6\sqrt58)^2=HB^2+42^2`
`=> HB=18(cm)`
`=> HC = AH^2 : HB = 98(cm)`
Vậy `HB=18cm, HC=98cm`.
T/c dg` trug tuyến ứng với cah huyền trog tam giác vuông = \(\frac{1}{2}\)cah huyền
=> BC = 10*2 = 20 cm
gọi x là cạnh góc vuông thứ nhất (x >0)
x - 4 là cạnh góc vuông thứ hai
Xét tam giác ABC vuông tại A, ta có:
\(^{BC^2}\) = AB2 + AC2
202 = x2 + (x+4)2
400 = x2 + x2 + 8x + 16
= 2x2 +8x - 364
\(\Delta\)= b2 = 4*a*c
= 3136 >0
vì \(\Delta\)> 0 nên pt luôn có 2 nghiệm phân biệt
x1=\(\frac{-b-\sqrt{\Delta}}{2a}\)=-16 (loại)
x2 =\(\frac{-b+\sqrt{\Delta}}{2a}\)=12( nhận)
Vậy x = 12 cm
x+4=12+4=16cm
Gọi x : là cạnh góc vuông thứ nhất
Gọi x - 4 : là cạnh góc vuông thứ hai
Gọi y : là cạnh huyền
Gọi z : là đường trung tuyến ứng với cạnh huyền
ĐIỀU KIỆN : x > 4
ta có : y = 2 z = 2 . 10 = 20 cm ( tính chất đường trung tuyến ứng với cạnh huyền )
ta có : y = x2 + (x - 4 ) 2
<=> 20= x2 + x2 - 2x . 4 + 42
<=> 20= 2x2 - 8x + 16
<=> 0 = 2x2 - 8x + 16 - 20
<=> 2x2 - 8x -4 = 0
( a= 2 ; b = -8 ; c = -4 )
\(\Delta=b^2-4ac\)
\(\Delta=\left(-8\right)^2-4.2.\left(-4\right)\)
\(\Delta=64+32\)
\(\Delta=96\) > 0
\(\sqrt{\Delta}=\sqrt{96}=4\sqrt{6}\)
\(x_1=\frac{8+4\sqrt{6}}{2.2}=2+\sqrt{6}cm>0\left(nhan\right)\)
\(x_2=\frac{8-4\sqrt{6}}{2.2}=2-\sqrt{6}< 0\) \(\left(LOAI\right)\)
với x= \(2+\sqrt{6}\)=> cạnh góc vuông thứ nhất là \(2+\sqrt{6}cm\)
voi x= \(2+\sqrt{6}\)=> cạnh góc vuông thứ hai là \(2+\sqrt{6}-4=-2+\sqrt{6}cm\)
DIỆN TÍCH CỦA MIENG ĐẤT HÌNH TAM GIÁC :
x . ( x - 4 )
=\(\left(2+\sqrt{6}\right).\left(-2+\sqrt{6}\right)\)
=\(2\left(cm^2\right)\)
Vay : diện tích của miếng đất hình tam giác là 2 cm2
Tích 2 cạnh góc vuông là:
\(x\sqrt{13}\times6x\sqrt{13}=78x^2\)
Tổng 2 bình phương 2 cạnh góc vuông là:
\(\left(x\sqrt{13}\right)^2=13x^2\)
Ta có hệ phương trình 2 ẩn a và b là độ dài 2 cạnh góc vuông
\(a^2+b^2=13x^2\) và \(ab=78x^2\)