K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 8 2023

a) Theo tài liệu nói trên, góc xOy trong hình nên có số đo từ 100° đến 105°

b) Vì các tia Ox, Oy được vẽ tương ứng trên mặt ghế, lưng ghế đồng thời vuông góc với giao tuyến a của mặt ghế và lưng ghế nên góc giữa lưng ghế và mặt ghế là góc giữa Ox và Oy mà góc xOy có số đo từ 100° đến 105°

Do đó nếu thiết kế theo hướng dẫn đó thì góc giữa mặt phẳng chứa mặt ghế và mặt phẳng chứa lưng ghế có thể nhận số đo 750 đến 800

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_1} = 15,\;d = 3\)

\({S_n} = \frac{n}{2}\left[ {2 \times 15 + \left( {n - 1} \right) \times 3} \right] = 870\)

\(\frac{n}{2}\left( {27 + 3n} \right) = 870\)

\(\begin{array}{l} \Leftrightarrow 3{n^2} + 27n - 1740 = 0\\ \Leftrightarrow \left[ \begin{array}{l}n = 20\\n =  - 29(L)\end{array} \right.\end{array}\)

Vậy cần phải thiết kế 20 hàng ghế.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Theo đề bài ta có dãy số chỉ số ghế có ở các hàng là một cấp số cộng có số hạng đầu \({u_1} = 17\) và công sai \(d = 3\).

a) Số ghế có ở hàng cuối cùng là: \({u_{20}} = {u_1} + 19{\rm{d}} = 17 + 19.3 = 74\) (ghế).

b) Tổng số ghế có trong rạp là: \({S_{20}} = \frac{{20\left[ {2{u_1} + 19{\rm{d}}} \right]}}{2} = \frac{{20\left[ {2.17 + 19.3} \right]}}{2} = 910\) (ghế).

27 tháng 2 2019

Đáp án A

Số cách xếp tuỳ ý là 45!.

Ta tìm số cách xếp thoả mãn; giả sử số ghế của A,B,C lần lượt là a,b,c.

Theo giả thiết có

Do đó b,c phải cùng chẵn hoặc cùng lẻ.

Nếu b,c chẵn có A 22 2  cách xếp B,C;

1 cách xếp A và 42! cách xếp học sinh khác.

Nếu b,c lẻ có  A 23 2  cách xếp B, C;

1 cách xếp A và 42! cách xếp học sinh khác.

Số cách xếp thoả mãn là  42 ! ( A 22 2 + A 23 2 )

Vậy xác suất cần tính

16 tháng 2 2017

Chọn B.

Giả sử số thứ tự trong danh sách là 

Do dãy này là cấp số cng nên ta có 

Số phần tử của không gian mẫu là 

 

Gọi A là biến cố “Tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau”. Để biến cố này xảy ra ta thực hiện liên tiếp các bước sau:

Bước 1: xếp thứ tự  cặp học sinh có các cặp số thứ tự là 

vào trước  cặp ghế đối diện nhau. Bước này có 5! cách.

Bước 2: xếp từng cặp một ngồi vào cặp ghế đối diện đã ) Chọn ở bước . Bước này có 2 5  cách.

Suy ra số kết quả thuận lợi cho biến cố A là 

Vậy xác suất của biến cố A là 

5 tháng 10 2021

a) Có 2 cách xếp.

    Bạn A có 6! cách.

    Bạn B có 6! cách.

    Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.

b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.

    Chọn 1 học sinh B đối diện A có 6 cách.

    Cứ chọn liên tục như vậy ta được:

     \(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)

   cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường         nhau.

9 tháng 10 2022

Ở ý a) tại sao bạn A lại có $6!$ cách v ạ?

bạn B cx thế ạ?

18 tháng 5 2017

Tổ hợp - xác suất

10 tháng 1 2018

7 tháng 3 2017

Đáp án A

Phương pháp :

+) Chọn vị trí cho các bạn nam (hoặc nữ).

+) Hoán đổi các vị trí.

+) Sử dụng quy tắc nhân.

Cách giải : Chọn 1 vị trí trong 2 vị trí đối xứng có C 2 1 cách chọn, như vậy có ( C 2 1 ) 4   =   2 4 cách chọn ghế cho 4 bạn nam.

4 bạn nam này có thể đổi chỗ cho nhau nên có 4! cách xếp

Vậy có 4!4!24 cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ.