Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sách là a
\(\left(a\inℕ\right)\)
Vì khi xếp thành từng bó 12 cuốn, 15 cuốn, 18 cuốn đều thừa 5 cuốn nên a - 5 \(⋮12,15,18\)
\(\Rightarrow a-15⋮BCNN\left(12,15,18\right)=180\)
Mà : \(200\le a\le400\)nên \(185\le a-15\le385\Rightarrow a-15=360\Rightarrow a=375\)
Vậy...
Gọi số sách cần tìm là a ( cuốn ) ( a ∈ N* ; 200 ≤ a ≤ 500 )
Theo bài ra , ta có :
a ⋮ 10
a ⋮ 15
a ⋮ 18
=> a ∈ BC( 10 ; 15 ; 18 )
Vì : 10 = 2 . 5
15 = 3 . 5
18 = 2 . 32
=> BCNN( 10 ; 15 ; 18 ) = 2 . 32 . 5 = 90
=> BC( 10 ; 15 ; 18 ) = { 0 ; 90 ; 180 ; 270 ; 360 ; 450 ; 540 ; ... }
=> a ∈ { 0 ; 90 ; 180 ; 270 ; 360 ; 450 ; 540 ; ... } mà 200 ≤ a ≤ 500
=> a ∈ { 270 ; 360 ; 450 }
Gọi x là số sách, x chia hết cho 12 , 15 , 18
= 400<x<500 (dấu < là bé hơn hoặc bằng)
= x thuộc BC(12 15 18 )
12 = •
15 = ◘
18 = ♠
BCNN (12 15 18 ) = kết quả
BC(12 15 18) = BC (kết quả) = (VD : 120;240;360;480;....)
Vậy số sách là 480 đây chỉ là VD
bài giải
Gọi số sách đó là x
Theo bài ra ta có :
x chia cho 10 ; 12 và 15 đều thiếu 2
\(\hept{\begin{cases}x+2⋮10\\x+2⋮12\\x+2⋮15\end{cases}}\Rightarrow x\in BC\left(10;12;15\right)\)
10 = 2.5
12= 22 .3
15 = 3.5
=> BCNN(10;12;15 ) = 22 .3.5 = 60
BC(10;12;15) = B(60 ) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ....}
x+2 \(\in\) { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ....}
mà 200\(\le\)x\(\le\)500
=> x+2 \(\in\) { 240 ; 300 ; 360 ; 420 ; 480}
=> x \(\in\) { 238 ; 398 ; 358 ; 418 ; 478 }
Hình như đề thiếu thì phải ==
Gọi m (m ∈ N*) là số sách cần tìm.
Vì xếp thành từng bó 10, 12,15 và 18 cuốn đều vừa đủ bó nên số sách m là BC(10;12;15;18)
Ta có: 10 = 2.5
12 = 22.3
15 = 3.5
18 = 2.32
BCNN(10,12,15,18) = 22.32.5 = 180
BC(10,12,15,18) = {0;180;360;540;..}
Vì số sách nằm trong khoảng 200 đến 500 nên m = 360
Vậy có 360 cuốn sách.
gọi số sách là : a
Theo đề ra ta có: a \(⋮\)10;12;15;18
\(\Rightarrow\)a\(\in\)BC(10;12;15;18)
Ta có
10=2.5
12=2\(^{^2}\).3
15=3.5
18=2.3\(^2\)
Vậy BCNN(10;12;15)=2\(^2\).3\(^2\).5=180
BC(10;12;15)=B(180)={0;180;360;540...}
Vì a khoảng 200 đến 500 nên a=360
Vậy bó sách đó có 36 quyển
Gọi m (m ∈ N*) là số sách cần tìm.
Vì xếp thành từng bó 10, 12,15 và 18 cuốn đều vừa đủ bó nên số sách m là BC(10;12;15;18)
Ta có: 10 = 2.5
12 = 22.3
15 = 3.5
18 = 2.32
BCNN(10,12,15,18) = 22.32.5 = 180
BC(10,12,15,18) = {0;180;360;540;..}
Vì số sách nằm trong khoảng 200 đến 500 nên m = 360
Vậy có 360 cuốn sách
+ Gọi số sách là a, ta có:
( a - 3 ) ⋮ 24 ; 30 ; 40 hay ( a - 3 ) = BC(24 ; 30 ; 40)
500 ≤ a ≤ 700
+ Ta có:
24 = 23 . 3
30 = 2 . 3 . 5
40 = 23 . 5
=> BNNC(24 ; 30 ; 40) = 23 . 3 . 5 = 120
=> a - 3 = B(120) = { 120 ; 240 ; 360 ; 480 ; 600 ; 720 ; ... }
=> a = { 123 ; 243 ; 363 ; 483 ; 603 ; 723 ; ... }
Mà 500 ≤ a ≤ 700 nên a = 603
+ Vậy số sách đó là: 603 cuốn