Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=777…77
=>A+a=777…77+a chia hết cho 35.
=>777…70+(7+a) chia hết cho 35
=>777…7.10+(7+a) chia hết cho 35
=>111…11.7.5.2+(7+a) chia hết cho 35
=>111…11.2.35+(7+a) chia hết cho 35
=>7+a chia hết cho 35
=>7+a=B(35)=(0,35,70,…)
=>a=(-7,28,63,…)
Vì a là số tự nhiên bé nhất
=>a=28
Vậy a=28
123654321
cach giai
goi a la so can tim ta co
a chia het cho 2,3,4,5,6 suy ra cstc la 0
tiep theo a chia het cho 7,8,9 suy ra
mk hết bít xin lỗi bn
Giả sử số tự nhiên a có n chữ số \(a=\overline{a_1a_2a_3...a_n}\)
Theo đề bài, ta có: \(\overline{2004a_1a_2a_3...a_n}⋮2018\)
\(\Rightarrow2004.10^n+\overline{a_1a_2a_3...a_n}⋮2003\)
\(\Rightarrow2003.10^n+10^n+\overline{a_1a_2a_3...a_n}⋮2003\)
Vì \(2003.10^n⋮2003\)nên \(10^n+\overline{a_1a_2a_3...a_n}⋮2003\)
Dễ thấy \(10^n+\overline{a_1a_2a_3...a_n}>0\)nên \(10^n+\overline{a_1a_2a_3...a_n}\ne0\)
\(\Rightarrow10^n+\overline{a_1a_2a_3...a_n}⋮2003\)khi và chỉ khi \(10^n+\overline{a_1a_2a_3...a_n}\ge2003\)
\(\Rightarrow n\ge4\)
Để a nhỏ nhất thì n nhỏ nhất, khi đó n = 4
\(\Rightarrow10^4+\overline{a_1a_2a_3a_4}⋮2003\)
\(\Rightarrow1988+8012+\overline{a_1a_2a_3a_4}⋮2003\)
Vì \(8012⋮2003\)nên \(1988+\overline{a_1a_2a_3a_4}⋮2003\)
\(\Rightarrow1988+\overline{a_1a_2a_3a_4}=2003k\left(k\inℕ^∗\right)\)
\(\Rightarrow\overline{a_1a_2a_3a_4}=2003k-1988\ge1000\)
\(\Rightarrow2003k\ge2988\Rightarrow k\ge1,49176...\Rightarrow k\ge2\)(vì \(k\inℕ^∗\))
Để a nhỏ nhất thì k cũng nhỏ nhất, khi đó k = 2
\(\Rightarrow\overline{a_1a_2a_3a_4}=2003.2-1988=2018\)
Vậy số tự nhiên a nhỏ nhất cần tìm là 2018.
28 đơn vị
28 đơn vị