K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

Gọi chiều dài và chiều rộng sân trường lần lượt là $a$ và $b$ (m)

ĐK: $a>b>0$

Theo bài ra ta có:

\(\left\{\begin{matrix} a^2+b^2=50^2\\ a-b=10\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+b^2=2500\\ a=b+10\end{matrix}\right.\)

\(\Rightarrow (b+10)^2+b^2=2500\)

\(\Leftrightarrow b^2+10b-1200=0\)

$\Leftrightarrow (b-30)(b+40)=0$

$\Rightarrow b=30$ (m)

$a=b+10=40$ (m)

Diện tích sân trường: $ab=30.40=1200$ (m2)

Đáp án C.

Gọi chiều rộng là x

=>Chiều dài là x+10

Theo đề, ta có: x^2+(x+10)^2=50^2

=>2x^2+20x-2400=0

=>x^2+10x-1200=0

=>(x+40)(x-30)=0

=>x=30

Diện tích là 30*40=1200m2

18 tháng 4 2022

gọi chiều rộng = a     => chiều dài = a+10

Áp dụng định lý Pytago => a^2 + (a+10)^2 = độ dài đường chéo ^2 = 1300

=> 2a^2 +20a +100=1300

=> a^2 +10a-600 = 0

=> (a+30)(a-20) =0

=> a=20

=> chu vi sân bóng = 2(a+a+10) = 2.50 =100

18 tháng 4 2022

27 tháng 3 2022

1250m2

27 tháng 3 2022

trình bày nữa

Gọi chiều dài, chiều rộng lần lượt là a,b

Theo đề, ta có hệ phương trình:

a-b=9 và (a+2)(b+1)=ab+50

=>a-b=9 và a+2b=48

=>a=22 và b=13

30 tháng 5 2016

Nửa chu vi của sân vườn đó là : 500 : 2 = 250 ( m )

Chiều dài của sân vườn đó là : ( 250+5):2 = 127,5 ( m)

Chiều rộng của sân vườn đó là : 127,5 - 5 = 122,5 (m)

Chu vi của sân vườn đó là : ( 122,5 + 127,5) : 2 = 125 (m)

   Đs : 125m

k mk nhak các bn 

30 tháng 5 2016

125        kết quả

31 tháng 1 2021

Câu 1: 

Gọi x là chiều dài mảnh đất (0<x<14; x>y)

Gọi y là chiều rộng mảnh vườn (0<y<14)

Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)

Vì đường chéo mảnh đất bằng 10m nên ta có PT:

x2+y2=100 (2)

Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)

\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)

Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)

-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm

Câu 1: 

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))

Vì chu vi mảnh đất là 28m nên ta có phương trình:

2(a+b)=28

hay a+b=14(1)

Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:

\(a^2+b^2=100\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)

Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m

24 tháng 10 2023

Ta có: \(AD=3AB\)

Xét tam giác vuông ABD ta có:

\(AD^2+AB^2=BD^2\)

\(\Rightarrow60^2=\left(3AB\right)^2+AB^2\)

\(\Rightarrow3600=9AB^2+AB^2\)

\(\Rightarrow3600=10AB^2\)

\(\Rightarrow AB^2=360\)

\(\Rightarrow AB=6\sqrt{10}\left(m\right)\) 

\(\Rightarrow AD=3\cdot6\sqrt{10}=18\sqrt{10}\left(m\right)\)

Diện tích sân bóng là:
\(AB\cdot AD=6\sqrt{10}\cdot18\sqrt{10}=1080\left(m^2\right)\)

1 tháng 2 2021

Câu trả lời:

Gọi chiều dài và chiều rộng sân trường lần lượt là x và y ( 0<x,y<170 ; x>y)

Vì chu vi là 340 nên ta có PT: x+y=170 (1)

Vì 3 lần chiều dài lớn hơn 4 lầm chiều rộng 20 m nên ta có PT: 

3x - 4y = 20 (2)

Từ (1) và (2) ta có HPT :

\(\left\{{}\begin{matrix}x+y=170\\3x-4y=20\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=100\\y=70\end{matrix}\right.\)

Vậy chiều dài là chiều rộng sân trường lần lượt là 100m và 70m.

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của sân trường(Điều kiện: a>0; b>0)

Vì chu vi của sân trường là 340m nên ta có phương trình: 

2(a+b)=340

\(\Leftrightarrow a+b=170\)(1)

Vì 3 lần chiều dài hơn 4 lần chiều rộng là 20m nên ta có phương trình:

3a-4b=20(2)

Từ (1) và (2) ta có được hệ phương trình:

\(\left\{{}\begin{matrix}a+b=170\\3a-4b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=510\\3a-4b=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7b=490\\a+b=170\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=70\\a=170-70=100\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài của sân trường là 100m; Chiều rộng của sân trường là 70m

4 tháng 2 2023

Tổng chiều dài và rộng là 
 200:2=100m
 chiều dài là 
 100:(2+3)x3=60m
 chiều rộng là 
  100-60=40n
 diện tích là 
 60x40=......m2

4 tháng 2 2023

gọi chiều dài là a và chiều rộng là b ta có 
   a+b=100 hay b=100-a
  và b=2/3a 
<=> 100-a=2/3a
<=> 100=5/3a
<=> a=100:5/3
<=> a= 60
=> b=100-60=40
  diện tích 60x40=......