K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trong bão học, xoáy thuận là khối không khí lớn xoay quanh một vùng áp suất thấp mạnh.[1][2] Xoáy thuận được đặc trưng bởi gió xoáy vào trong và xoay quanh một vùng áp suất thấp.[3][4]Các hệ thống áp suất thấp lớn nhất là các xoáy cực (Polar vortex) và xoáy thuận ngoài nhiệt đới với quy mô lớn nhất (synoptic scale). Các xoáy thuận lõi ấm như xoáy thuận nhiệt đới và các xoáy thuận cận...
Đọc tiếp

Trong bão học, xoáy thuận là khối không khí lớn xoay quanh một vùng áp suất thấp mạnh.[1][2] Xoáy thuận được đặc trưng bởi gió xoáy vào trong và xoay quanh một vùng áp suất thấp.[3][4]

Các hệ thống áp suất thấp lớn nhất là các xoáy cực (Polar vortex) và xoáy thuận ngoài nhiệt đới với quy mô lớn nhất (synoptic scale). Các xoáy thuận lõi ấm như xoáy thuận nhiệt đới và các xoáy thuận cận nhiệt đới cũng nằm trong quy mô này. Các xoáy thuận cỡ trung, lốc xoáy và lốc cát thuộc quy mô trung nhỏ hơn [5]. Các xoáy thuận cấp cao có thể tồn tại mà không có vùng áp suất thấp ở bề mặt, và có thể chụm lại từ đáy của vùng áp suất thấp nhiệt đới thuộc phần trên của tầng đối lưu trong những tháng mùa hè ở Bắc bán cầu. Các xoáy thuận cũng xuất hiện trên các hành tinh ngoài trái đất, chẳng hạn như sao Hỏa và sao Hải Vương [6][7]. Sự hình thành xoáy thuận mô tả quá trình hình thành và cường độ của xoáy thuận [8]. Các xoáy thuận ngoại nhiệt đới bắt đầu như là những đợt sóng ở các vùng rộng lớn có độ tương phản nhiệt độ vĩ độ trung mở rộng được gọi là các vùng baroclinic. Các vùng này kết giao và tạo thành frông thời tiết khi sự lưu hành xoáy đóng kín và tăng cường. Sau đó trong chu kỳ sống của chúng, các xoáy thuận ngoài nhiệt đới hấp lưu khi không khí lạnh làm giảm khí nóng và trở thành hệ thống lõi lạnh. Xích lốc của Một tuyến đường của xoáy thuận được hướng dẫn trong suốt vòng đời của nó từ 2 đến 6 ngày nhờ luồng lái của dòng tia cận nhiệt đới.

0
Các Polar High là các khu vực có áp suất khí quyển cao xung quanh các cực Bắc và cực Nam ; Polar High hoạt động cực bắc mạnh hơn vì đất tăng và mất nhiệt hiệu quả hơn biển. Nhiệt độ lạnh ở các vùng cực khiến không khí hạ xuống tạo ra áp suất cao, giống như nhiệt độ ấm quanh xích đạo làm cho không khí tăng lên tạo ra vùng hội tụ giữa các áp suất thấp. Không khí tăng cũng xảy ra...
Đọc tiếp

Các Polar High là các khu vực có áp suất khí quyển cao xung quanh các cực Bắc và cực Nam ; Polar High hoạt động cực bắc mạnh hơn vì đất tăng và mất nhiệt hiệu quả hơn biển. Nhiệt độ lạnh ở các vùng cực khiến không khí hạ xuống tạo ra áp suất cao, giống như nhiệt độ ấm quanh xích đạo làm cho không khí tăng lên tạo ra vùng hội tụ giữa các áp suất thấp. Không khí tăng cũng xảy ra dọc theo các dải áp thấp nằm ngay dưới các cực cao xung quanh vĩ tuyến thứ 50 của vĩ độ. Các vùng hội tụ ngoài hành tinh này bị chiếm giữ bởi các Frông cực nơi các khối không khí có nguồn gốc cực gặp nhau và đụng độ với các vùng có nguồn gốc nhiệt đới hoặc cận nhiệt đới. Sự hội tụ của không khí tăng này hoàn thành chu kỳ thẳng đứng xung quanh Hoàn lưu khí quyển ở mỗi bán cầu vĩ độ. Liên quan chặt chẽ đến khái niệm này là xoáy cực .

Nhiệt độ bề mặt dưới các Polar High là lạnh nhất trên Trái đất, không có tháng nào có nhiệt độ trung bình trên mức đóng băng. Các khu vực dưới cực cao cũng trải qua lượng mưa rất thấp, dẫn đến chúng được gọi là "sa mạc cực ".

Luồng không khí đi ra ngoài từ các cực để tạo ra các cơn gió đông cực trong Bắc Cực và Nam Cực khu vực này.

0
BẠN BIẾT GÌ VỀ CÁC VỆ TINH KHÍ TƯỢNG NHÂN TẠO ? Khi đã có trạm quan sát trên không trung, chúng ta có thể mô tả một cách chi tiết về Trái Đất từ trên không trung một cách dễ dàng. Các vệ tinh bay xung quanh Trái Đất luôn theo sát chúng ta từng bước. Trong một thế giới đầy biến động, khoa học kĩ thuật đã quyết định cuộc cách mạng xã hội, hệ thống thông tin đều dựa vào các vệ tinh...
Đọc tiếp

BẠN BIẾT GÌ VỀ CÁC VỆ TINH KHÍ TƯỢNG NHÂN TẠO ?

Khi đã có trạm quan sát trên không trung, chúng ta có thể mô tả một cách chi tiết về Trái Đất từ trên không trung một cách dễ dàng. Các vệ tinh bay xung quanh Trái Đất luôn theo sát chúng ta từng bước. Trong một thế giới đầy biến động, khoa học kĩ thuật đã quyết định cuộc cách mạng xã hội, hệ thống thông tin đều dựa vào các vệ tinh để truyền đi khắp toàn cầu. Một vệ tinh khí tượng đã được phóng lên quỹ đạo cách Trái Đất hơn 36.000km, do tốc độ quỹ đạo của nó và góc độ tự quay của của Trái Đất là như nhau nên nó dường như được cố định ở không trung phía trên xích đạo. Vệ tinh này hàng ngày cung cấp về tình hình thời tiết, mô tả cho chúng ta các luồng khí nóng, những tầng mây mù hay hướng đi của các cơn bão. Đặc biệt là vệ tinh này có thể ghi chép lại toàn bộ diễn biến của một vòi rồng, những số liệu phức tạp qua sự giải thích của các nhà khí tượng học được biến thành các bản tin dự báo thời tiết phát đi hàng ngày trên ti vi và đài phát thanh. Những dự báo kịp thời này đã giúp con người giảm nhẹ được những tổn thất do thiên tai gây ra. Có những trận bão lịch sử nhìn từ vệ tinh là hoàn toàn yên tĩnh nhưng trong thực tế thì hoàn toàn khác, gió mạnh với vận tốc 300km/h đã tàn phá dữ dội và gây ra chết chóc cho con người. Chúng ta không thể khống chế được bão nhưng có thể chế ngự được lũ lụt; căn cứ vào các ảnh chụp được từ vệ tinh chúng ta có thể xác định được chính xác vị trí để xây các đê bao và đê ngăn lũ nhằm bảo vệ sự sống và đất đai.

0
*Vũ trụ bao gồm tất cả các vật chất và không gian hiện có được coi là một tổng thể. Vũ trụ được cho là có đường kính ít nhất 10 tỷ năm ánh sáng và chứa một số lượng lớn các thiên hà; nó đã được mở rộng kể từ khi thành lập ở Big Bang khoảng 13 tỷ năm trước.[8][9][10][11][12][13] Vũ trụ bao gồm các hành tinh, sao, thiên hà, các thành phần của không gian liên sao, những hạt hạ...
Đọc tiếp

*

Vũ trụ bao gồm tất cả các vật chất và không gian hiện có được coi là một tổng thể. Vũ trụ được cho là có đường kính ít nhất 10 tỷ năm ánh sáng và chứa một số lượng lớn các thiên hà; nó đã được mở rộng kể từ khi thành lập ở Big Bang khoảng 13 tỷ năm trước.[8][9][10][11][12][13] Vũ trụ bao gồm các hành tinh, sao, thiên hà, các thành phần của không gian liên sao, những hạt hạ nguyên tử nhỏ nhất, và mọi vật chất và năng lượng. Vũ trụ quan sát được có đường kính vào khoảng 28 tỷ parsec (91 tỷ năm ánh sáng) trong thời điểm hiện tại.[2] Các nhà thiên văn chưa biết được kích thước toàn thể của Vũ trụ là bao nhiêu và có thể là vô hạn.[14] Những quan sát và phát triển của vật lý lý thuyết đã giúp suy luận ra thành phần và sự tiến triển của Vũ trụ.

Xuyên suốt các thư tịch lịch sử, các thuyết vũ trụ học và tinh nguyên học, bao gồm các mô hình khoa học, đã từng được đề xuất để giải thích những hiện tượng quan sát của Vũ trụ. Các thuyết địa tâm định lượng đầu tiên đã được phát triển bởi các nhà triết học Hy Lạp cổ đại và triết học Ấn Độ.[15][16] Trải qua nhiều thế kỷ, các quan sát thiên văn ngày càng chính xác hơn đã đưa tới thuyết nhật tâm của Nicolaus Copernicus và, dựa trên kết quả thu được từ Tycho Brahe, cải tiến cho thuyết đó về quỹ đạo elip của hành tinh bởi Johannes Kepler, mà cuối cùng được Isaac Newton giải thích bằng lý thuyết hấp dẫn của ông. Những cải tiến quan sát được xa hơn trong Vũ trụ dẫn tới con người nhận ra rằng Hệ Mặt Trời nằm trong một thiên hà chứa hàng tỷ ngôi sao, gọi là Ngân Hà. Sau đó các nhà thiên văn phát hiện ra rằng thiên hà của chúng ta chỉ là một trong số hàng trăm tỷ thiên hà khác. Ở trên những quy mô lớn nhất, sự phân bố các thiên hà được giả định là đồng nhất và như nhau trong mọi hướng, có nghĩa là Vũ trụ không có biên hay một tâm đặc biệt nào đó. Quan sát về sự phân bố và vạch phổ của các thiên hà đưa đến nhiều lý thuyết vật lý vũ trụ học hiện đại. Khám phá trong đầu thế kỷ XX về sự dịch chuyển đỏ trong quang phổ của các thiên hà gợi ý rằng Vũ trụ đang giãn nở, và khám phá ra bức xạ nền vi sóng vũ trụ cho thấy Vũ trụ phải có thời điểm khởi đầu.[17] Gần đây, các quan sát vào cuối thập niên 1990 chỉ ra sự giãn nở của Vũ trụ đang gia tốc[18] cho thấy thành phần năng lượng chủ yếu trong Vũ trụ thuộc về một dạng chưa biết tới gọi là năng lượng tối. Đa phần khối lượng trong Vũ trụ cũng tồn tại dưới một dạng chưa từng biết đến hay là vật chất tối.

Lý thuyết Vụ Nổ Lớn là mô hình vũ trụ học được chấp thuận rộng rãi, nó miêu tả về sự hình thành và tiến hóa của Vũ trụ. Không gian và thời gian được tạo ra trong Vụ Nổ Lớn, và một lượng cố định năng lượng và vật chất choán đầy trong nó; khi không gian giãn nở, mật độ của vật chất và năng lượng giảm. Sau sự giãn nở ban đầu, nhiệt độ Vũ trụ giảm xuống đủ lạnh cho phép hình thành lên những hạt hạ nguyên tử đầu tiên và tiếp sau là những nguyên tử đơn giản. Các đám mây khổng lồ chứa những nguyên tố nguyên thủy này theo thời gian dưới ảnh hưởng của lực hấp dẫn kết tụ lại thành các ngôi sao. Nếu giả sử mô hình phổ biến hiện nay là đúng, thì tuổi của Vũ trụ có giá trị tính được từ những dữ liệu quan sát là 13,799 ± 0,021 tỷ năm.[1].

Có nhiều giả thiết đối nghịch nhau về Số phận sau cùng của Vũ trụ. Các nhà vật lý và triết học vẫn không biết chắc về những gì, nếu bất cứ điều gì, có trước Vụ Nổ Lớn. Nhiều người phản bác những ước đoán, nghi ngờ bất kỳ thông tin nào từ trạng thái trước này có thể thu thập được. Có nhiều giả thuyết về đa vũ trụ, trong đó một vài nhà vũ trụ học đề xuất rằng Vũ trụ có thể là một trong nhiều vũ trụ cùng tồn tại song song với nhau [19][20].

Là một phần trong loạt bài vềVũ trụ học vật lý📷

Vụ Nổ Lớn · Vũ trụ

Độ tuổi vũ trụ

Lịch sử vũ trụ

Vũ trụ ban đầu[hiện]Sự giãn nở · Tương lai[hiện]Thành phần · Cấu trúc[hiện]Thí nghiệm[hiện]Nhà khoa học[hiện]Lịch sử[hiện]

📷 Thể loại

📷 Chủ đề Vũ trụ học

📷 Chủ đề Thiên văn học

📷 Chủ đề Vật lý

x

t

s

Mục lục

1Định nghĩa

2Các tiến trình và Vụ Nổ Lớn

3Tính chất

3.1Hình dạng

3.2Kích thước và các khu vực

3.3Tuổi và sự giãn nở

3.4Không thời gian

4Thành phần

4.1Năng lượng tối

4.2Vật chất tối

4.3Vật chất thường

4.4Hạt sơ cấp

4.4.1Hadron

4.4.2Lepton

4.4.3Photon

5Các mô hình vũ trụ học

5.1Mô hình dựa trên thuyết tương đối tổng quát

6Xem thêm

7Tham khảo

8Đọc thêm

Định nghĩa

Vũ trụ có thể được định nghĩa là mọi thứ đang tồn tại, mọi thứ đã tồn tại, và mọi thứ sẽ tồn tại.[21][22][23] Theo như hiểu biết hiện tại, Vũ trụ chứa các thành phần: không thời gian, các dạng năng lượng (bao gồm bức xạ điện từ và vật chất), và các định luật vật lý liên hệ giữa chúng. Vũ trụ bao hàm mọi dạng sống, mọi lịch sử, và thậm chí một số nhà triết học và khoa học gợi ý rằng nó bao hàm các ý tưởng như toán học và logic.[24][25][26]

Các tiến trình và Vụ Nổ Lớn

Bài chi tiết: Vụ Nổ Lớn và Biên niên của Vũ trụ

Mô hình được chấp thuận rộng rãi về nguồn gốc của Vũ trụ đó là lý thuyết Vụ Nổ Lớn.[27][28] Mô hình Vụ Nổ Lớn miêu tả trạng thái sớm nhất của Vũ trụ có mật độ và nhiệt độ cực kỳ lớn và sau đó trạng thái này giãn nở tại mọi điểm trong không gian. Mô hình dựa trên thuyết tương đối rộng và những giả thiết cơ bản như tính đồng nhất và đẳng hướng của không gian. Phiên bản của mô hình với hằng số vũ trụ học (Lambda) và vật chất tối lạnh, gọi là mô hình Lambda-CDM, là mô hình đơn giản nhất cung cấp cách giải thích hợp lý cho nhiều quan sát khác nhau trong Vũ trụ. Mô hình Vụ Nổ Lớn giải thích cho những quan sát như sự tương quan giữa khoảng cách và dịch chuyển đỏ của các thiên hà, tỉ lệ giữa số lượng nguyên tử hiđrô với nguyên tử heli, và bức xạ nền vi sóng vũ trụ.

Tiến trình của Vũ trụ📷Trong biểu đồ này, thời gian truyền từ trái sang phải, vì vậy tại bất kỳ thời điểm nào, Vũ trụ được biểu diễn bằng một "lát" hình đĩa của biểu đồ.

Trạng thái nóng, đặc ban đầu được gọi là kỷ nguyên Planck, một giai đoạn ngắn kéo dài từ lúc thời gian bằng 0 cho tới một đơn vị thời gian Planck xấp xỉ bằng 10−43 giây. Trong kỷ nguyên Planck, mọi loại vật chất và mọi loại năng lượng đều tập trung trong một trạng thái đặc, nơi lực hấp dẫn được cho là trở lên mạnh ngang với các lực cơ bản khác, và tất cả các lực này có thể đã thống nhất làm một. Từ kỷ nguyên Planck, Vũ trụ đã giãn nở cho tới hình dạng hiện tại, mà có khả năng nó đã trải qua một giai đoạn lạm phát rất ngắn khiến cho kích thước của Vũ trụ đạt tới kích thước lớn hơn nhiều chỉ trong ít hơn 10−32 giây.[29] Giai đoạn này làm đều đặn đi các khối cục vật chất nguyên sơ của Vũ trụ và để lại nó trong trạng thái đồng đều và đẳng hướng như chúng ta quan sát thấy ngày nay. Các thăng giáng cơ học lượng tử trong suốt quá trình này để lại các thăng giáng mật độ trong Vũ trụ, mà sau đó trở thành mầm mống cho sự hình thành các cấu trúc trong Vũ trụ.[30]

Sau kỷ nguyên Planck và lạm phát tới các kỷ nguyên quark, hadron, và lepton. Theo Steven Weinberg, ba kỷ nguyên này kéo dài khoảng 13,82 giây sau thời điểm Vụ Nổ Lớn.[31] Sự xuất hiện của các nguyên tố nhẹ có thể được giải thích bằng lý thuyết dựa trên sự giãn nở của không gian kết hợp với vật lý hạt nhân và vật lý nguyên tử.[32] Khi Vũ trụ giãn nở, mật độ năng lượng của bức xạ điện từ giảm nhanh hơn so với mật độ của vật chất bởi vì năng lượng của một photon giảm theo bước sóng của nó. Cùng với Vũ trụ giãn nở và nhiệt độ giảm đi, các hạt cơ bản kết hợp lại thành những hạt tổ hợp lớn hơn và ổn định hơn. Do vậy, chỉ vài giây sau Vụ Nổ Lớn, hình thành các hạt proton và neutron ổn định và rồi hình thành lên các hạt nhân nguyên tử thông qua các phản ứng hạt nhân.[33][34] Quá trình này, gọi là tổng hợp hạt nhân Vụ Nổ Lớn, dẫn tới sự có mặt hiện nay của các hạt nhân nhẹ, bao gồm hiđrô, deuteri, và heli. Tổng hợp hạt nhân Vụ Nổ Lớn kết thúc sau khoảng 20 phút, khi nhiệt độ Vũ trụ giảm xuống mức không còn đủ để xảy ra các phản ứng tổng hợp hạt nhân nữa.[35] Ở giai đoạn này, vật chất trong Vũ trụ chủ yếu là plasma nóng đặc chứa các electron mang điện tích âm, các hạt neutrino trung hòa và các hạt nhân mang điện tích dương. Các hạt và phản hạt liên tục va chạm và hủy thành cặp photon và ngược lại. Kỷ nguyên này được gọi là kỷ nguyên photon, kéo dài trong khoảng 380 nghìn năm.[36]

Với photon không còn tương tác với vật chất nữa, Vũ trụ bước vào giai đoạn vật chất chiếm đa số về mật độ (matter-dominated era; lưu ý là giai đoạn này sau khoảng 47 nghìn năm kể từ Vụ Nổ Lớn,[37] bởi Vũ trụ vẫn như màn sương mờ đục-optical thick-đối với bức xạ. Trước giai đoạn này là bức xạ chiếm đa số và động lực của Vũ trụ bị chi phối bởi bức xạ.). Đến thời điểm của kỷ nguyên tái kết hợp - sau khoảng 380 nghìn năm, electron và các hạt nhân hình thành lên các nguyên tử ổn định, cho phép Vũ trụ trở lên trong suốt với sóng điện từ. Lúc này ánh sáng có thể lan truyền tự do trong không gian, và nó vẫn còn được quan sát cho tới tận ngày nay với tên gọi bức xạ nền vi sóng vũ trụ (CMB). Sau khoảng 100 đến 300 triệu năm, những ngôi sao đầu tiên bắt đầu hình thành; đây là những ngôi sao rất lớn, sáng và chịu trách nhiệm cho quá trình tái ion hóa của Vũ trụ. Bởi không có các nguyên tố nặng hơn liti từ giai đoạn tổng hợp hạt nhân Vụ Nổ Lớn, những ngôi sao này đã tạo ra các nguyên tố nặng đầu tiên bởi quá trình tổng hợp hạt nhân sao.[38] Vũ trụ cũng chứa một dạng năng lượng bí ẩn gọi là năng lượng tối; mật độ năng lượng của năng lượng tối không thay đổi theo thời gian. Sau khoảng 9,8 tỷ năm, Vũ trụ đã giãn nở đến mức độ khiến cho mật độ của vật chất nhỏ hơn mật độ của năng lượng tối, đánh dấu bắt đầu của giai đoạn năng lượng tối thống lĩnh Vũ trụ (dark-energy-dominated era).[39] Trong giai đoạn này, sự giãn nở gia tăng của Vũ trụ là do năng lượng tối.

Tính chất

Bài chi tiết: Vũ trụ quan sát được, Tuổi của Vũ trụ, và Giãn nở metric của không gian

Không thời gian của Vũ trụ thường được thể hiện từ khuôn khổ của không gian Euclid, khi coi không gian có ba chiều vật lý, và thời gian là một chiều khác, trở thành "chiều thứ tư".[40] Bằng cách kết hợp không gian và thời gian thành một thực thể đa tạp toán học duy nhất gọi là không gian Minkowski, các nhà vật lý đã đưa ra nhiều lý thuyết vật lý miêu tả các hiện tượng trong Vũ trụ theo một cách thống nhất hơn từ phạm vi siêu thiên hà cho tới mức hạ nguyên tử.

Các sự kiện trong không thời gian không được xác định tuyệt đối từ khoảng không gian và khoảng thời gian mà có quan hệ tương đối với chuyển động của một quan sát viên. Không gian Minkowski miêu tả gần đúng Vũ trụ khi không có lực hấp dẫn; đa tạp tựa-Riemann của thuyết tương đối rộng miêu tả Vũ trụ chính xác hơn khi đưa trường hấp dẫn và vật chất vào không thời gian bốn chiều. Lý thuyết dây giả thiết có tồn tại những chiều ngoại lai khác của không thời gian.

Trong bốn tương tác cơ bản, lực hấp dẫn thống trị Vũ trụ trên phạm vi kích thước lớn, bao gồm thiên hà và các cấu trúc lớn hơn. Các hiệu ứng hấp dẫn có tính tích lũy; ngược lại, trong khi đó các hiệu ứng của điện tích âm và điện tích dương có xu hướng hủy lẫn nhau, khiến cho lực điện từ không có ảnh hưởng nhiều trên quy mô lớn của Vũ trụ. Hai tương tác còn lại, tương tác yếu và tương tác mạnh, giảm cường độ tác dụng rất nhanh theo khoảng cách và các hiệu ứng của chúng chủ yếu đáng kể trên phạm vi hạ nguyên tử.

Vũ trụ chứa vật chất nhiều hơn phản vật chất, một sự chênh lệch có khả năng liên quan tới sự vi phạm CP trong tương tác yếu.[41] Dường như Vũ trụ cũng không có động lượnghay mômen động lượng. Sự vắng mặt của điện tích hay động lượng trên tổng thể có thể xuất phát từ các định luật vật lý được đa số các nhà khoa học công nhận (tương ứng định luật Gauss và tính không phân kỳ của giả tenxơ ứng suất-năng lượng-động lượng) nếu Vũ trụ có biên giới hạn.[42]

Các cấp độ khoảng cách trong Vũ trụ quan sát được📷Vị trí của Trái Đất trong Vũ trụ.

Hình dạng

📷Ba hình dạng có thể của vũ trụ.Bài chi tiết: Hình dạng của Vũ trụ

Thuyết tương đối tổng quát miêu tả không thời gian bị cong như thế nào do ảnh hưởng của vật chất và năng lượng. Tô pô hay hình họccủa Vũ trụ bao gồm cả hình học cục bộ trong vũ trụ quan sát được và hình học toàn cục. Các nhà vũ trụ học thường nghiên cứu trên một nhát cắt kiểu không gian nhất định của không thời gian gọi là các tọa độ đồng chuyển động. Phần không thời gian có thể quan sát được là phần nhìn ngược về nón ánh sáng mà phân định ra chân trời vũ trụ học. Chân trời vũ trụ học (cũng gọi là chân trời hạt hoặc chân trời ánh sáng) là khoảng cách đo được mà từ đó có thể khôi phục được thông tin[43] hay khoảng cách lớn nhất mà hạt có thể đạt được để tới quan sát viên trong phạm vi tuổi của Vũ trụ. Chân trời này là ranh giới biên giữa những vùng quan sát được và không quan sát được của Vũ trụ.[44][45] Sự tồn tại, tính chất và ý nghĩa của chân trời Vũ trụ học phụ thuộc vào từng mô hình vũ trụ học cụ thể.

Một tham số quan trọng xác định lên tương lai tiến hóa của Vũ trụ đó là tham số mật độ, Omega (Ω), định nghĩa bằng mật độ vật chất trung bình của Vũ trụ chia cho một giá trị giới hạn của mật độ này. Việc có một trong ba khả năng của hình dạng Vũ trụ phụ thuộc vào Ω có bằng, nhỏ hơn hay lớn hơn 1. Tương ứng với các giá trị này là Vũ trụ phẳng, mở hay Vũ trụ đóng.[46]

Các quan sát, bao gồm từ các tàu Cosmic Background Explorer (COBE), Tàu thăm dò Bất đẳng hướng Vi sóng Wilkinson (WMAP), và Planck vẽ bản đồ CMB, cho thấy Vũ trụ mở rộng vô hạn với tuổi hữu hạn như được miêu tả bởi mô hình Friedmann–Lemaître–Robertson–Walker (FLRW).[47][48][49][50] Mô hình FLRW cũng ủng hộ các mô hình vũ trụ lạm phát và mô hình chuẩn của vũ trụ học, miêu tả vũ trụ phẳng và đồng nhất với sự chiếm lĩnh chủ yếu của vật chất tối và năng lượng tối.[51][52]

Tô pô toàn cục của Vũ trụ rất khó xác định và người ta chưa biết chính xác tính chất này của Vũ trụ. Từ các dữ liệu quan trắc CMB của tàu Planck, một số nhà vật lý cho rằng tô pô của vũ trụ là mở, lớn vô hạn có biên hoặc không có biên.[53][54]

Kích thước và các khu vực

Xem thêm: Vũ trụ quan sát được và Vũ trụ học quan sát

Xác định kích thước chính xác của Vũ trụ là một vấn đề khó khăn. Theo như định nghĩa có tính giới hạn, Vũ trụ là những thứ trong phạm vi không thời gian mà có thể có cơ hội tương tác với chúng ta và ngược lại.[55] Theo thuyết tương đối tổng quát, một số khu vực của không gian sẽ không bao giờ tương tác được với chúng ta ngay cả trong thời gian tồn tại của Vũ trụ bởi vì tốc độ ánh sáng là giới hạn và sự giãn nở của không gian. Ví dụ, thông điệp vô tuyến gửi từ Trái Đất có thể không tới được một số khu vực của không gian, ngay cả nếu như Vũ trụ tồn tại mãi mãi: do không gian có thể giãn nở nhanh hơn ánh sáng truyền bên trong nó.[56]

Các vùng không gian ở xa được cho là tồn tại và là một phần thực tại như chúng ta, cho dù chúng ta không bao giờ chạm tới được chúng. Vùng không gian mà chúng ta có thể thu nhận được thông tin gọi là Vũ trụ quan sát được. Nó phụ thuộc vào vị trí của người quan sát. Bằng cách di chuyển, một quan sát viên có thể liên lạc được với một vùng không thời gian lớn hơn so với quan sát viên đứng yên. Tuy vậy, ngay cả đối với quan sát viên di chuyển nhanh nhất cũng không thể tương tác được với toàn bộ không gian. Nói chung, Vũ trụ quan sát được lấy theo nghĩa của phần không gian Vũ trụ được quan sát từ điểm thuận lợi của chúng ta từ Ngân Hà.

Khoảng cách riêng—khoảng cách được đo tại một thời điểm cụ thể, bao gồm vị trí hiện tại từ Trái Đất cho tới biên giới của Vũ trụ quan sát được là bằng 46 tỷ năm ánh sáng (14 tỷ parsec), do đó đường kính của Vũ trụ quan sát được vào khoảng 91 tỷ năm ánh sáng (28×109 pc). Khoảng cách ánh sáng từ biên của Vũ trụ quan sát được là xấp xỉ bằng tuổi của Vũ trụ nhân với tốc độ ánh sáng, 13,8 tỷ năm ánh sáng (4,2×109 pc), nhưng khoảng cách này không biểu diễn cho một thời điểm bất kỳ khác, bởi vì biên giới của Vũ trụ và Trái Đất đang di chuyển dần ra xa khỏi nhau.[57] Để so sánh, đường kính của một thiên hà điển hình gần bằng 30.000 năm ánh sáng, và khoảng cách điển hình giữa hai thiên hà lân cận nhau là khoảng 3 triệu năm ánh sáng.[58] Ví dụ, đường kính của Ngân Hà vào khoảng 100.000 năm ánh sáng,[59] và thiên hà lớn gần nhất với Ngân Hà, thiên hà Andromeda, nằm cách xa khoảng 2,5 triệu năm ánh sáng.[60] Bởi vì chúng ta không thể quan sát không gian vượt ngoài biên giới của Vũ trụ quan sát được, chúng ta không thể biết được kích thước của Vũ trụ là hữu hạn hay vô hạn.[14][61][62]

Tuổi và sự giãn nở

Bài chi tiết: Tuổi của Vũ trụ và Giãn nở metric của không gian

Các nhà thiên văn tính toán tuổi của Vũ trụ bằng giả thiết rằng mô hình Lambda-CDM miêu tả chính xác sự tiến hóa của Vũ trụ từ một trạng thái nguyên thủy rất nóng, đậm đặc và đồng nhất cho tới trạng thái hiện tại và họ thực hiện đo các tham số vũ trụ học mà cấu thành lên mô hình này. Mô hình này được hiểu khá tốt về mặt lý thuyết và được ủng hộ bởi những quan trắc thiên văn với độ chính xác cao gần đây như từ các tàu WMAP và Planck. Các kết quả này thường khớp với các quan trắc từ các dự án khảo sát sự bất đẳng hướng trong bức xạ vi sóng vũ trụ, mối liên hệ giữa dịch chuyển đỏ và độ sáng từ các vụ nổ siêu tân tinh loại Ia, và khảo sát các cụm thiên hà trên phạm vi lớn bao gồm đặc điểm dao động baryon tựa âm thanh (baryon acoustic oscillation). Những quan sát khác, như nghiên cứu hằng số Hubble, sự phân bố các cụm thiên hà, hiện tượng thấu kính hấp dẫn yếu và tuổi của các cụm sao cầu, đều cho dữ liệu nhất quán với nhau, từ đó mang lại phép thử chéo cho mô hình chuẩn của Vũ trụ học ở giai đoạn trẻ của vũ trụ nhưng bớt chính xác hơn đối với những đo đạc trong phạm vi gần Ngân Hà. Với sự ưu tiên về mô hình Lambda-CDM là đúng, sử dụng nhiều kỹ thuật đo cho những tham số này cho phép thu được giá trị xấp xỉ tốt nhất về tuổi của Vũ trụ vào khoảng 13,799 ± 0,021 tỷ năm (tính đến năm 2015).[1]

Theo thời gian Vũ trụ và các thành phần trong nó tiến hóa, ví dụ số lượng và sự phân bố của các chuẩn tinh và các thiên hà đều thay đổi[63] và chính không gian cũng giãn nở. Vì sự giãn nở này, các nhà khoa học có thể ghi lại được ánh sáng từ một thiên hà nằm cách xa Trái Đất 30 tỷ năm ánh sáng cho dù ánh sáng mới chỉ đi được khoảng thời gian khoảng 13 tỷ năm; lý do không gian giữa chúng đã mở rộng ra. Sự giãn nở này phù hợp với quan sát rằng ánh sáng từ những thiên hà ở xa khi tới được thiết bị đo thì đã bị dịch chuyển sáng phía đỏ; các photon phát ra từ chúng đã mất dần năng lượng và chuyển dịch sang bước sóng dài hơn (hay tần số thấp hơn) trong suốt quãng đường hành trình của chúng. Phân tích phổ từ các siêu tân tinh loại Ia cho thấy sự giãn nở không gian là đang gia tốc tăng.[64][65]

Càng nhiều vật chất trong Vũ trụ, lực hút hấp dẫn giữa chúng càng mạnh. Nếu Vũ trụ quá đậm đặc thì nó sẽ sớm co lại thành một kỳ dị hấp dẫn. Tuy nhiên, nếu Vũ trụ chứa quá ít vật chất thì sự giãn nở sẽ gia tốc quá nhanh không đủ thời gian để các hành tinh và hệ hành tinh hình thành. Sau Vụ Nổ Lớn, Vũ trụ giãn nở một cách đơn điệu. Thật ngạc nhiên là, Vũ trụ của chúng ta có mật độ khối lượng vừa đúng vào cỡ khoảng 5 proton trên một mét khối cho phép sự giãn nở của không gian kéo dài trong suốt 13,8 tỷ năm qua, một quãng thời gian đủ để hình thành lên vũ trụ quan sát được như ngày nay.[66]

Có những lực mang tính động lực tác động lên các hạt trong Vũ trụ mà ảnh hưởng tới tốc độ giãn nở. Trước năm 1998, đa số các nhà vũ trụ học cho rằng sự tăng giá trị của hằng số Hubble sẽ tiến tới giảm dần theo thời gian do sự ảnh hưởng của tương tác hấp dẫn, do vậy họ đưa ra một đại lượng đo được trong Vũ trụ đó là tham số giảm tốc mà họ hi vọng nó có liên hệ trực tiếp tới mật độ vật chất của Vũ trụ. Vào năm 1998, hai nhóm các nhà thiên văn độc lập với nhau đã đo được tham số giảm tốc có giá trị xấp xỉ bằng −1 nhưng khác 0, hàm ý rằng tốc độ giãn nở ngày nay của Vũ trụ là gia tăng theo thời gian.[18][67]

Không thời gian

Bài chi tiết: Không thời gian và Tuyến thế giớiXem thêm: Phép biến đổi Lorentz

Không thời gian là bối cảnh cho mọi sự kiện vật lý xảy ra—một sự kiện là một điểm trong không thời gian xác định bởi các tọa độ không gian và thời gian. Các yếu tố cơ bản của không thời gian là các sự kiện. Trong một không thời gian bất kỳ, sự kiện được xác định một cách duy nhất bởi vị trí và thời gian. Bởi vì các sự kiện là các điểm không thời gian, trong vật lý tương đối tính cổ điển, vị trí của một hạt cơ bản (giống như hạt điểm) tại một thời điểm cụ thể có thể được viết bằng {\displaystyle (x,y,z,t)}📷. Có thể định nghĩa không thời gian là hợp của mọi sự kiện giống như cách một đường thẳng là hợp của mọi điểm trên nó, mà theo phát biểu toán học gọi là đa tạp.[68]

Vũ trụ dường như là một continum không thời gian chứa ba chiều không gian một chiều thời khoảng (thời gian). Trên trung bình, Vũ trụ có tính chất hình học gần phẳng (hay độ cong không gian xấp xỉ bằng 0), có nghĩa là hình học Euclid là mô hình xấp xỉ tốt về hình học của Vũ trụ trên khoảng cách lớn của nó.[69] Ở cấu trúc toàn cục, tô pô của không thời gian có thể là không gian đơn liên (simply connected space), tương tự như với một mặt cầu, ít nhất trên phạm vi Vũ trụ quan sát được. Tuy nhiên, các quan sát hiện tại không thể ngoại trừ một số khả năng rằng Vũ trụ có thêm nhiều chiều ẩn giấu và không thời gian của Vũ trụ có thể là không gian tô pô đa liên toàn cục (multiply connected global topology), tương tự như tô pô của không gian hai chiều đối với mặt của hình trụ hoặc hình vòng xuyến.[48][70][71][72]

Thành phần

📷Mô phỏng sự hình thành của các đám và sợi thiên hà trên quy mô lớn theo mô hình Vật chất tối lạnh kết hợp với năng lượng tối. Khung hình chỉ ra tiến hóa của cấu trúc này trong hộp thể tích 43 triệu parsec (hay 140 triệu năm ánh sáng) từ dịch chuyển đỏ bằng 30 cho tới kỷ nguyên hiện tại (hộp trên cùng bên trái z=30 tới hộp dưới cùng bên phải z=0).Xem thêm: Sự hình thành và tiến hóa thiên hà, Quần tụ thiên hà, Dự án Illustris, và Tinh vân

Vũ trụ chứa phần lớn các thành phần năng lượng tối, vật chất tối, và vật chất thông thường. Các thành phần khác là bức xạ điện từ(ước tính chiếm từ 0,005% đến gần 0,01%) và phản vật chất.[73][74][75] Tổng lượng bức xạ điện từ sản sinh ra trong Vũ trụ đã giảm đi một nửa trong 2 tỷ năm qua.[76][77]

Tỷ lệ phần trăm của mọi loại vật chất và năng lượng thay đổi trong suốt lịch sử của Vũ trụ.[78] Ngày nay, vật chất thông thường, bao gồm nguyên tử, sao, thiên hà, môi trường không gian liên sao, và sự sống, chỉ chiếm khoảng 4,9% thành phần của Vũ trụ.[6] Mật độtổng hiện tại của loại vật chất thông thường là rất thấp, chỉ khoảng 4,5 × 10−31 gram trên một centimét khối, tương ứng với mật độ của một proton trong thể tích bốn mét khối.[4] Các nhà khoa học vẫn chưa biết được bản chất của cả năng lượng tối và vật chất tối. Vật chất tối, một dạng vật chất bí ẩn mà các nhà vật lý vẫn chưa nhận ra dạng của nó, chiếm thành phần khoảng 26,8%. Năng lượng tối, có thể coi là năng lượng của chân không và là nguyên nhân gây ra sự giãn nở gia tốc của Vũ trụ trong lịch sử gần đây của nó, thành phần còn lại chiếm khoảng 68,3%.[6][79][80]

📷Bản đồ vẽ các siêu đám thiên hà và khoảng trống gần Trái Đất nhất.

Vật chất, vật chất tối, năng lượng tối phân bố đồng đều trong toàn thể Vũ trụ khi xét phạm vi khoảng cách trên 300 triệu năm ánh sáng.[81] Tuy nhiên, trên những phạm vi nhỏ hơn, vật chất có xu hướng tập trung lại thành cụm; nhiều nguyên tử tích tụ thành các ngôi sao, các ngôi sao tập trung trong thiên hà và phần lớn các thiên hà quần tụ lại thành các đám, siêu đám và cuối cùng là những sợi thiên hà (galaxy filament) trên những khoảng cách lớn nhất. Vũ trụ quan sát được chứa xấp xỉ 3×10 23 ngôi sao[82] và hơn 100 tỷ (1011) thiên hà.[83] Các thiên hà điển hình xếp từ loại thiên hà lùn với vài chục triệu [84] (107) sao cho tới những thiên hà chứa khoảng một nghìn tỷ (1012)[85] sao. Giữa những cấu trúc này là các khoảng trống (void) lớn, với đường kính vào cỡ 10–150 Mpc (33 triệu–490 triệu ly). Ngân Hà nằm trong Nhóm Địa Phương, rồi đến lượt nó thuộc về siêu đám Laniakea.[86] Siêu đám này trải rộng trên 500 triệu năm ánh sáng, trong khi Nhóm Địa Phương có đường kính xấp xỉ 10 triệu năm ánh sáng.[87] Vũ trụ cũng có những vùng trống hoang vu tương đối lớn; khoảng trống lớn nhất từng đo được có đường kính vào khoảng 1,8 tỷ ly (550 Mpc).[88]

📷Tỷ lệ phần trăm các thành phần của Vũ trụ ngày nay so với thời điểm 380.000 năm sau Vụ Nổ Lớn, dữ liệu thu thập trong 5 năm từ tàu WMAP (tính đến 2008).[89] (Do làm tròn, tổng các tỷ lệ này không chính xác bằng 100%). Điều này phản ánh giới hạn của WMAP khi xác định vật chất tối và năng lượng tối.

Trên quy mô lớn hơn các siêu đám thiên hà, Vũ trụ quan sát được là đẳng hướng, có nghĩa rằng những dữ liệu mang tính chất thống kê của Vũ trụ có giá trị như nhau trong mọi hướng khi quan sát từ Trái Đất. Vũ trụ chứa đầy bức xạ vi sóng có độ đồng đều cao mà nó tương ứng với phổ bức xạ vật đen trong trạng thái cân bằng nhiệt động ở nhiệt độ gần 2,72548 kelvin.[5] Tiên đề coi Vũ trụ là đồng đều và đẳng hướng trên phạm vi khoảng cách lớn được gọi là nguyên lý vũ trụ học.[90] Nếu vật chất và năng lượng trong Vũ trụ phân bố đồng đều và đẳng hướng thì sẽ nhìn thấy mọi thứ như nhau khi quan sát từ mọi điểm[91] và Vũ trụ không có một tâm đặc biệt nào.[92]

Năng lượng tối

Bài chi tiết: Năng lượng tối

Tại sao sự giãn nở của Vũ trụ lại tăng tốc vẫn là một câu hỏi hóc búa đối với các nhà vũ trụ học. Người ta thường cho rằng "năng lượng tối", một dạng năng lượng bí ẩn với giả thuyết mật độ không đổi và có mặt khắp nơi trong Vũ trụ là nguyên nhân của sự giãn nở này.[93]Theo nguyên lý tương đương khối lượng-năng lượng, trong phạm vi cỡ thiên hà, mật độ của năng lượng tối (~ 7 × 10−30 g/cm3) nhỏ hơn rất nhiều so với mật độ của vật chất thông thường hay của năng lượng tối chứa trong thể tích của một thiên hà điển hình. Tuy nhiên, trong thời kỳ năng lượng tối thống trị hiện nay, nó lấn át thành phần khối lượng-năng lượng của Vũ trụ bởi vì sự phân bố đồng đều của nó ở khắp nơi trong không gian.[94][95]

Các nhà khoa học đã đề xuất hai dạng mà năng lượng tối có thể gán cho đó là hằng số vũ trụ học, một mật độ năng lượng không đổi choán đầy không gian vũ trụ,[96] và các trường vô hướng như nguyên tố thứ năm (quintessence) hoặc trường moduli, các đại lượng động lực mà mật độ năng lượng có thể thay đổi theo không gian và thời gian. Các đóng góp từ những trường vô hướng mà không đổi trong không gian cũng thường được bao gồm trong hằng số vũ trụ học. Ngoài ra, biến đổi nhỏ ở giá trị trường vô hướng bởi sự phân bố bất đồng nhất theo không gian khiến cho rất khó có thể phân biệt những trường này với mô hình hằng số vũ trụ. Vật lý lượng tử cũng gợi ý hằng số này có thể có nguồn gốc từ năng lượng chân không (ví dụ sự xuất hiện của hiệu ứng Casimir). Tuy vậy giá trị đo được của mật độ năng lượng tối lại nhỏ hơn 120 lần bậc độ lớn so với giá trị tính toán của lý thuyết trường lượng tử.

Vật chất tối

Bài chi tiết: Vật chất tối

Vật chất tối là loại vật chất giả thiết không thể quan sát được trong phổ điện từ, nhưng theo tính toán nó phải chiếm phần lớn vật chất trong Vũ trụ. Sự tồn tại và tính chất của vật chất tối được suy luận từ ảnh hưởng hấp dẫn của nó lên vật chất baryon, bức xạ và các cấu trúc lớn trong Vũ trụ. Ngoài neutrino, một loại được các nhà thiên văn vật lý xếp vào dạng vật chất tối nóng - có thể phát hiện thông qua các máy dò đặt dưới lòng đất, thì cho tới nay chưa thể phát hiện tác động trực tiếp của vật chất tối lên các thiết bị thí nghiệm, khiến cho nó trở thành một trong những bí ẩn lớn nhất của ngành thiên văn vật lý hiện đại. Vật chất tối không phát ra hay hấp thụ ánh sáng hay bất kỳ bức xạ điện từnào ở mức đáng kể. Theo kết quả quan trắc từ bức xạ nền vi sóng vũ trụ, vật chất tối chiếm khoảng 26,8% tổng thành phần năng lượng-vật chất và 84,5% tổng thành phần vật chất trong Vũ trụ quan sát được.[79][97]

Vật chất thường

Bài chi tiết: Vật chất📷Ảnh chụp của Hubble về cụm sao trẻ Westerlund 2 và môi trường xung quanh nó.

Thành phần khối lượng-năng lượng chiếm 4,9% còn lại của Vũ trụ là "vật chất thông thường", tức là bao gồm các loại nguyên tử, ion, electron và các vật thể mà chúng cấu thành lên. Chúng bao gồm các sao, loại thiên thể tạo ra phần lớn ánh sáng phát ra từ các thiên hà, cũng như khí và bụi trong môi trường liên sao (vd. các tinh vân) và liên thiên hà, các hành tinh, và mọi vật thể có mặt trong cuộc sống hàng ngày mà chúng ta có thể cầm nắm, sản xuất, nghiên cứu và phát hiện ra.[98] Vật chất thông thường tồn tại trong bốn trạng thái (hay pha): thể rắn, lỏng, khí, và plasma. Tuy nhiên, những tiến bộ trong kỹ thuật thực nghiệm đã cho phép hiện thực hóa được những trạng thái mới của vật chất mà trước đó chỉ được tiên toán tồn tại trên lý thuyết, đó là ngưng tụ Bose–Einstein và ngưng tụ fermion.

Vật chất bình thường cấu thành từ hai loại hạt cơ bản: quark và lepton.[99] Ví dụ, hạt proton hình thành từ hai hạt quark lên và một hạt quark xuống; hạt neutron hình thành từ hai hạt quark xuống và một hạt quark lên; và electron là một loại thuộc họ lepton. Một nguyên tử chứa một hạt nhân nguyên tử, mà do các proton và neutron liên kết với nhau, và các electron trên obitan nguyên tử. Bởi vì phần lớn khối lượng của nguyên tử tập trung tại hạt nhân của nó, mà cấu thành từ các hạt baryon, các nhà thiên văn học thường sử dụng thuật ngữ vật chất baryon để miêu tả vật chất thông thường, mặc dù một phần nhỏ của loại "vật chất baryon" này là các electron và neutrino.

Ngay sau vụ nổ Big Bang, các proton và neutron nguyên thủy hình thành từ dạng plasma quark–gluon của giai đoạn sơ khai khi Vũ trụ "nguội" đi dưới hai nghìn tỷ độ. Một vài phút sau, trong quá trình tổng hợp hạt nhân Big Bang, các hạt nhân hình thành nhờ sự kết hợp của các hạt proton và neutron nguyên thủy. Quá trình tổng hợp này tạo ra các nguyên tố nhẹ như liti và beryllium, trong khi các nguyên tố nặng hơn chúng lại được sản sinh từ quá trình khác. Một số nguyên tử boron có thể hình thành vào giai đoạn này, nhưng đối với nguyên tố nặng hơn kế tiếp, carbon, đã không hình thành ra một lượng đáng kể. Tổng hợp hạt nhân Vụ Nổ Lớn kết thúc sau khoảng 20 phút do sự giảm nhanh chóng của nhiệt độ và mật độ bởi sự giãn nở của Vũ trụ. Sự hình thành các nguyên tố nặng hơn là do kết quả của các quá trình tổng hợp hạt nhân saovà tổng hợp hạt nhân siêu tân tinh.[100]

Một số cấu trúc trong Vũ trụ📷Tinh vân Đầu Ngựa trong chòm sao Orion.📷Cụm thiên hà Abell 1689 với hiệu ứng thấu kính hấp dẫn📷Ngân Hà trên bầu trời Paranal với kính thiên văn VLT.

Hạt sơ cấp

📷Mô hình chuẩn của các hạt sơ cấp: 12 fermion cơ bản và 4 boson cơ bản. Các boson chuẩn (màu đỏ) bắt cặp với các fermion (màu tím và xanh), phóng to hình vẽ để thấy. Các cột là ba thế hệ vật chất (những fermion) và những hạt trường của tương tác (boson). Trong ba cột đầu tiên, hai hàng trên là các hạt quarks và hai hàng dưới là các lepton. Hai hàng trên lần lượt là quark lên (u) và quark xuống (d), quark duyên (c) và quark lạ (s), quark đỉnh (t) và quark đáy (b), và photon (γ) và gluon (g), ngoài cùng là boson Higgs. Hai hàng dưới chứa lần lượt neutrino electron (νe) và electron (e), neutrino muon (νμ) và muon (μ), neutrino tau (ντ) và tau (τ), và các boson mang lực hạt nhân yếu Z0 và W±. Khối lượng, điện tích, và spin được viết ra cho mỗi loại hạt.Bài chi tiết: Vật lý hạt

Vật chất thông thường và các lực tác dụng lên vật chất được miêu tả theo tính chất và hoạt động của các hạt sơ cấp.[101] Các hạt này đôi khi được miêu tả là cơ bản, bởi vì dường như chúng không có cấu trúc bên trong, và người ta chưa biết liệu chúng có phải là hạt tổ hợp của những hạt nhỏ hơn hay không.[102][103] Lý thuyết quan trọng trung tâm miêu tả các hạt sơ cấp là Mô hình Chuẩn, lý thuyết đề cập đến các tương tác điện từ, tương tác yếu và tương tác mạnh.[104] Mô hình Chuẩn đã được kiểm chứng và xác nhận bằng thực nghiệm liên quan tới sự tồn tại của các hạt cấu thành lên vật chất: các hạt quark và lepton, và những "phản hạt" đối ngẫu với chúng, cũng như các hạt chịu trách nhiệm truyền tương tác: photon, và boson W và Z , và gluon.[102] Mô hình Chuẩn cũng tiên đoán sự tồn tại của loại hạt gần đây mới được xác nhận tồn tại đó là boson Higgs, loại hạt đặc trưng cho một trường trong Vũ trụ mà chịu trách nhiệm cho khối lượng của các hạt sơ cấp.[105][106] Bởi vì nó đã thành công trong giải thích rất nhiều kết quả thí nghiệm, Mô hình Chuẩn đôi lúc được coi là "lý thuyết của mọi thứ".[104] Tuy nhiên, Mô hình Chuẩn không miêu tả lực hấp dẫn. Một lý thuyết thực thụ "cho tất cả" vẫn còn là mục tiêu xa của ngành vật lý lý thuyết.[107]

Hadron

Bài chi tiết: Hadron

Hadron là những hạt tổ hợp chứa các quark liên kết với nhau bởi lực hạt nhân mạnh. Hadron được phân thành hai họ: baryon(như proton và neutron) được cấu thành từ ba hạt quark, và meson (như hạt pion) được cấu thành từ một quark và một phản quark. Trong các hadron, proton là loại hạt ổn định với thời gian sống rất lâu, và neutron khi liên kết trong hạt nhân nguyên tử cũng là loại ổn định. Các hadron khác rất không bền dưới các điều kiện bình thường và do vậy chúng là những thành phần không đáng kể trong Vũ trụ. Từ xấp xỉ 10−6 giây sau vụ nổ Big Bang, trong giai đoạn gọi là kỷ nguyên hadron, nhiệt độ của Vũ trụ đã giảm đáng kể cho phép các hạt quark liên kết với các gluon để tạo thành hadron, và khối lượng của Vũ trụ giai đoạn này chủ yếu đóng góp từ các hadron. Nhiệt độ lúc đầu đủ cao để cho phép hình thành các cặp hadron/phản-hadron, mà giữ cho vật chất và phản vật chất trong trạng thái cân bằng nhiệt động. Tuy nhiên, khi nhiệt độ Vũ trụ tiếp tục giảm, các cặp hadron/phản-hadron không còn tồn tại nữa. Đa số các hadron và phản-hadron hủy lẫn nhau trong phản ứng hủy cặp hạt-phản hạt, chỉ để lại một lượng nhỏ hadron tại lúc Vũ trụ mới trải qua quãng thời gian một giây.[108]: 244–266

Lepton

Bài chi tiết: Lepton

Lepton là loại hạt sơ cấp có spin bán nguyên không tham gia vào tương tác mạnh nhưng nó tuân theo nguyên lý loại trừ Pauli; không có hai lepton cùng một thế hệ nào có thể ở cùng một trạng thái tại cùng một thời gian.[109] Có hai lớp lepton: các lepton mang điện tích (còn được biết đến lepton giống electron), và các lepton trung hòa (hay các hạt neutrino). Electron là hạt ổn định và là lepton mang điện phổ biến nhất trong Vũ trụ, trong khi muon và tau là những hạt không bền mà nhanh chóng phân rã sau khi được tạo ra từ các va chạm năng lượng cao, như ở phản ứng tia vũ trụ bắn phá bầu khí quyển hoặc thực hiện trong các máy gia tốc.[110][111] Các lepton mang điện có thể kết hợp với các hạt khác để tạo thành nhiều loại hạt tổ hợp khác nhau như các nguyên tử và positronium. Electron chi phối gần như mọi tính chất hóa học của các nguyên tố và hợp chất do chúng tạo nên các obitan nguyên tử. Neutrino tương tác rất hiếm với các hạt khác, và do vậy rất khó theo dõi được chúng. Các dòng hạt chứa hàng tỷ tỷ neutrino bay khắp Vũ trụ nhưng hầu hất đều không tương tác với vật chất thông thường.[112]

Có một giai đoạn ngắn trong quá trình tiến hóa lúc sơ khai của Vũ trụ mà các hạt lepton chiếm lĩnh khối lượng chủ yếu. Nó bắt đầu gần 1 giây sau Vụ Nổ Lớn, sau khi phần lớn các hadron và phản hadron hủy lẫn nhau khi kết thúc kỷ nguyên hadron. Trong kỷ nguyên lepton, nhiệt độ của Vũ trụ vẫn còn đủ cao để duy trì các phản ứng sinh cặp lepton/phản-lepton, do đó lúc này các lepton và phản-lepton ở trong trạng thái cân bằng nhiệt động. Đến xấp xỉ 10 giây kể từ Vụ Nổ Lớn, nhiệt độ của Vũ trụ giảm xuống dưới điểm mà cặp lepton và phản-lepton không thể tạo ra được nữa.[113] Gần như toàn bộ lepton và phản-lepton sau đó hủy lẫn nhau, chỉ còn lại dư một ít lepton. Khối lượng-năng lượng của Vũ trụ khi đó chủ yếu do các photon đóng góp và Vũ trụ tiến tới giai đoạn kỷ nguyên photon.[114][115]

Photon

Bài chi tiết: Kỷ nguyên photonXem thêm: Photino

Photon là hạt lượng tử của ánh sáng và tất cả các bức xạ điện từ khác. Nó cũng là hạt truyền tương tác của lực điện từ, thậm chí đối với trường hợp tương tác thông qua các photon ảo. Hiệu ứng của lực điện từ có thể dễ dàng quan sát trên cấp vi mô và vĩ mô bởi vì photon có khối lượng nghỉ bằng 0; điều này cho phép tương tác có phạm vi tác dụng trên khoảng cách lớn. Giống như tất cả các hạt sơ cấp khác, photon được giải thích tốt bằng cơ học lượng tử và nó thể hiện lưỡng tính sóng hạt, các tính chất có của sóng lẫn của hạt.

Kỷ nguyên photon bắt đầu sau khi đa phần các lepton và phản-lepton hủy lẫn nhau tại cuối kỷ nguyên lepton, khoảng 10 giây sau Big Bang. Hạt nhân nguyên tử được tạo ra trong quá trình tổng hợp hạt nhân xuất hiện trong thời gian một vài phút của kỷ nguyên photon. Vũ trụ trong kỷ nguyên này bao gồm trạng thái vật chất plasma nóng đặc của các hạt nhân, electron và photon. Khoảng 380.000 năm sau Big Bang, nhiệt độ của Vũ trụ giảm xuống tới giá trị cho phép các electron có thể kết hợp với hạt nhân nguyên tử để tạo ra các nguyên tử trung hòa. Kết quả là, photon không còn thường xuyên tương tác với vật chất nữa và Vũ trụ trở lên "sáng rõ" hơn. Các photon có dịch chuyển đỏ lớn từ giai đoạn tạo nên bức xạ nền vi sóng vũ trụ. Những thăng giáng nhỏ trong nhiệt độ và mật độ phát hiện thấy trong CMB chính là những "mầm mống" sơ khai mà từ đó các cấu trúc trong Vũ trụ hình thành lên.[108]: 244–266

[hiện]

x

t

s

Timeline of the Big Bang

Các mô hình vũ trụ học

Mô hình dựa trên thuyết tương đối tổng quát

Bài chi tiết: Nghiệm của phương trình trường EinsteinXem thêm: Big Bang và Số phận sau cùng của vũ trụ

Thuyết tương đối rộng là lý thuyết hình học về lực hấp dẫn do Albert Einstein đưa ra vào năm 1915 và là miêu tả hiện tại của hấp dẫn trong vật lý hiện đại. Nó là cơ sở cho các mô hình vật lý của Vũ trụ. Thuyết tương đối tổng quát mở rộng phạm vi của thuyết tương đối hẹp và định luật vạn vật hấp dẫn của Newton, đưa đến cách miêu tả thống nhất về hấp dẫn như là tính chất hình học của không gian và thời gian, hay không thời gian. Đặc biệt, độ cong của không thời gian có liên hệ trực tiếp với năng lượng và động lượng của vật chất và bức xạ có mặt trong một thể tích cho trước. Liên hệ này được xác định bằng phương trình trường Einstein, một hệ phương trình vi phân riêng phần. Trong thuyết tương đối rộng, sự phân bố của vật chất và năng lượng xác định ra hình học của không thời gian, từ đó miêu tả chuyển động có gia tốc của vật chất. Do vậy, một trong các nghiệm của phương trình trường Einstein miêu tả sự tiến triển của Vũ trụ. Kết hợp với các giá trị đo về số lượng, loại và sự phân bố của vật chất trong Vũ trụ, các phương trình của thuyết tương đối tổng quát miêu tả sự vận động của Vũ trụ theo thời gian.[116]

Với giả sử của nguyên lý vũ trụ học về Vũ trụ có tính chất đồng nhất và đẳng hướng ở khắp nơi, có một nghiệm cụ thể chính xác của phương trình trường miêu tả Vũ trụ đó là tenxơ mêtric gọi là mêtric Friedmann–Lemaître–Robertson–Walker,

{\displaystyle ds^{2}=-c^{2}dt^{2}+R(t)^{2}\left({\frac {dr^{2}}{1-kr^{2}}}+r^{2}d\theta ^{2}+r^{2}\sin ^{2}\theta \,d\phi ^{2}\right)}📷

trong đó (r, θ, φ) là các tọa độ tương ứng trong hệ tọa độ cầu. Mêtric này chỉ có hai tham số chưa xác định. Đó là tham số không thứ nguyên tỷ lệ dịch chuyển độ dài (dimensionless length scale factor) R miêu tả kích thước của Vũ trụ như là một hàm số của thời gian; giá trị R tăng biểu thị cho sự giãn nở của Vũ trụ.[117] Chỉ số độ cong k miêu tả hình học của Vũ trụ. Chỉ số k được định nghĩa bằng 0 tương ứng cho hình học Euclid phẳng, bằng 1 tương ứng với không gian có độ cong toàn phần dương, hoặc bằng −1 tương ứng với không gian có độ cong âm.[118] Giá trị của hàm số R theo biến thời gian t phụ thuộc vào chỉ số k và hằng số vũ trụ học Λ.[116] Hằng số vũ trụ học biểu diễn cho mật độ năng lượng của chân không trong Vũ trụ và có khả năng liên hệ tới năng lượng tối.[80] Phương trình miêu tả R biến đổi như thế nào theo thời gian được gọi là phương trình Friedmann mang tên nhà vật lý Alexander Friedmann.[119]

Kết quả thu được cho R(t) phụ thuộc vào k và Λ, nhưng nó có một số đặc trưng tổng quát. Đầu tiên và quan trọng nhất, tỷ lệ dịch chuyển độ dài R của Vũ trụ sẽ không đổi chỉ khinếu Vũ trụ là đẳng hướng hoàn hảo với độ cong toàn phần dương (k=1) và có một giá trị chính xác về mật độ ở khắp nơi, như được lần đầu tiên chỉ ra bởi Albert Einstein.[116] Tuy vậy, trạng thái cân bằng này là không ổn định: bởi vì các quan sát cho thấy Vũ trụ có vật chất phân bố bất đồng nhất trên phạm vi nhỏ, R phải thay đổi theo thời gian. Khi R thay đổi, mọi khoảng cách không gian trong Vũ trụ cũng thay đổi tương ứng; dẫn tới có một sự giãn nở hoặc co lại trên tổng thể của không gian Vũ trụ. Hiệu ứng này giải thích cho việc quan sát thấy các thiên hà dường như đang lùi ra xa so với nhau; bởi vì không gian giữa chúng đang giãn ra. Sự giãn nở của không gian cũng giải thích lý do vì sao hai thiên hà có thể nằm cách nhau 40 tỷ năm ánh sáng, mặc dù chúng có thể hình thành ở một thời điểm nào đó cách đây gần 13,8 tỷ năm[120] và không bao giờ chuyển động đạt tới tốc độ ánh sáng.

Thứ hai, trong các nghiệm có một đặc tính đó là tồn tại kỳ dị hấp dẫn trong quá khứ, khi R tiến tới 0 và năng lượng và vật chất có mật độ lớn vô hạn. Dường như đặc điểm này là bất định bởi vì điều kiện biên ban đầu để giải phương trình vi phân riêng phần dựa trên giả sử về tính đồng nhất và đẳng hướng (nguyên lý vũ trụ học) và chỉ xét tới tương tác hấp dẫn. Tuy nhiên, định lý kỳ dị Penrose–Hawking chứng minh rằng đặc điểm kỳ dị này xuất hiện trong những điều kiện rất tổng quát. Do vậy, theo phương trình trường Einstein, R lớn lên nhanh chóng từ một trạng thái nóng đặc cực độ, xuất hiện ngay lập tức sau kỳ dị hấp dẫn (tức khi R có giá trị nhỏ hữu hạn); đây là tính chất cơ bản của mô hình Vụ Nổ Lớn của Vũ trụ. Để hiểu bản chất kỳ dị hấp dẫn của Big Bang đòi hỏi một lý thuyết lượng tử về hấp dẫn, mà vẫn chưa có lý thuyết nào thành công hay được xác nhận bằng thực nghiệm.[121]

Thứ ba, chỉ số độ cong k xác định dấu của độ cong không gian trung bình của không-thời gian[118] trên những khoảng cách lớn (lớn hơn khoảng 1 tỷ năm ánh sáng). Nếu k=1, độ cong là dương và Vũ trụ có thể tích hữu hạn.[122] Những vũ trụ như thế được hình dung là một mặt cầu 3 chiều nhúng trong một không gian bốn chiều. Ngược lại, nếu k bằng 0 hoặc âm, Vũ trụ có thể tích vô hạn.[122] Có một cảm nhận phản trực giác đó là dường như một vũ trụ lớn vô hạn được tạo ra tức thì từ thời điểm Vụ Nổ Lớn khi R=0 và mật độ vô hạn, nhưng điều này đã được tiên đoán chính xác bằng toán học khi k không bằng 1. Có thể hình dung một cách tương tự, một mặt phẳng rộng vô hạn có độ cong bằng 0 và diện tích lớn vô hạn, trong khi một hình trụ dài vô hạn có kích thước hữu hạn theo một hướng và một hình xuyến có cả hai đều là hữu hạn. Vũ trụ với mô hình dạng hình xuyến có tính chất giống với Vũ trụ thông thường với điều kiện biên tuần hoàn (periodic boundary conditions).

Số phận sau cùng của vũ trụ vẫn còn là một câu hỏi mở, bởi vì nó phụ thuộc chủ yếu vào chỉ số độ cong k và hằng số vũ trụ Λ. Nếu mật độ Vũ trụ là đủ đậm đặc, k sẽ có thể bằng +1, có nghĩa rằng độ cong trung bình của nó đa phần là dương và Vũ trụ cuối cùng sẽ tái suy sụp trong Vụ Co Lớn,[123] và có thể bắt đầu một vũ trụ mới từ Vụ Nẩy Lớn (Big Bounce). Ngược lại, nếu Vũ trụ không đủ đậm đặc, k sẽ bằng 0 hoặc −1 và Vũ trụ sẽ giãn nở mãi mãi, nguội lạnh dần đi và cuối cùng đạt tới Vụ đóng băng lớn và cái chết nhiệt của vũ trụ.[116] Các số liệu hiện tại cho thấy tốc độ giãn nở của Vũ trụ không giảm dần, mà ngược lại tăng dần; nếu quá trình này kéo dài mãi, Vũ trụ cuối cùng sẽ đạt tới Vụ Xé Lớn (Big Rip). Trên phương diện quan trắc, Vũ trụ dường như có hình học phẳng (k = 0), và mật độ trung bình của nó rất gần với giá trị tới hạn giữa khả năng tái suy sụp và giãn nở mãi mãi.[124]

6
26 tháng 1 2019

z thì ai tạo ra vũ trụ bt ko?

1 tháng 2 2019

Vũ trụ xàm lắm tạo nhóm về toán đi :V

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả...
Đọc tiếp

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]

Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả thuyết bằng các chứng minh toán học. Khi những cấu trúc toán học là mô hình tốt cho hiện thực, lúc đó suy luận toán học có thể cung cấp sự hiểu biết sâu sắc hay những tiên đoán về tự nhiên. Thông qua việc sử dụng những phương pháp trừu tượng và lôgic, toán học đã phát triển từ việc đếm, tính toán, đo lường, và nghiên cứu có hệ thống những hình dạng và chuyển động của các đối tượng vật lý. Con người đã ứng dụng toán học trong đời sống từ xa xưa. Việc tìm lời giải cho những bài toán có thể mất hàng năm, hay thậm chí hàng thế kỷ.[11]

Những lập luận chặt chẽ xuất hiện trước tiên trong nền toán học Hy Lạp cổ đại, đáng chú ý nhất là trong tác phẩm Cơ sở của Euclid. Kể từ những công trình tiên phong của Giuseppe Peano (1858–1932), David Hilbert (1862–1943), và của những nhà toán học khác trong thế kỷ 19 về các hệ thống tiên đề, nghiên cứu toán học trở thành việc thiết lập chân lý thông qua suy luận lôgic chặt chẽ từ những tiên đề và định nghĩa thích hợp. Toán học phát triển tương đối chậm cho tới thời Phục hưng, khi sự tương tác giữa những phát minh toán học với những phát kiến khoa học mới đã dẫn đến sự gia tăng nhanh chóng những phát minh toán học vẫn tiếp tục cho đến ngày nay.[12]

Toán học được sử dụng trên khắp thế giới như một công cụ thiết yếu trong nhiều lĩnh vực, bao gồm khoa học, kỹ thuật, y học, và tài chính. Toán học ứng dụng, một nhánh toán học liên quan đến việc ứng dụng kiến thức toán học vào những lĩnh vực khác, thúc đẩy và sử dụng những phát minh toán học mới, từ đó đã dẫn đến việc phát triển nên những ngành toán hoàn toàn mới, chẳng hạn như thống kê và lý thuyết trò chơi. Các nhà toán học cũng dành thời gian cho toán học thuần túy, hay toán học vị toán học. Không có biên giới rõ ràng giữa toán học thuần túy và toán học ứng dụng, và những ứng dụng thực tiễn thường được khám phá từ những gì ban đầu được xem là toán học thuần túy.[13]

Mục lục

1Lịch sử

2Cảm hứng, thuần túy ứng dụng, và vẻ đẹp

3Ký hiệu, ngôn ngữ, tính chặt chẽ

4Các lĩnh vực toán học

4.1Nền tảng và triết học

4.2Toán học thuần túy

4.2.1Lượng

4.2.2Cấu trúc

4.2.3Không gian

4.2.4Sự thay đổi

4.3Toán học ứng dụng

4.3.1Thống kê và những lĩnh vực liên quan

4.3.2Toán học tính toán

5Giải thưởng toán học và những bài toán chưa giải được

6Mối quan hệ giữa toán học và khoa học

7Xem thêm

8Chú thích

9Tham khảo

10Liên kết ngoài

Lịch sử[sửa | sửa mã nguồn]

📷Nhà toán học Hy Lạp Pythagoras (khoảng 570–495 trước Tây lịch), được coi là đã phát minh ra định lý Pythagore.Bài chi tiết: Lịch sử toán học📷Nhà toán học Ba Tư Al-Khwarizmi (Khoảng 780-850 TCN), người phát minh ra Đại số.

Từ "mathematics" trong tiếng Anh bắt nguồn từ μάθημα (máthēma) trong tiếng Hy Lạp cổ, có nghĩa là "thứ học được",[14] "những gì người ta cần biết," và như vậy cũng có nghĩa là "học" và "khoa học"; còn trong tiếng Hy Lạp hiện đại thì nó chỉ có nghĩa là "bài học." Từ máthēma bắt nguồn từ μανθάνω (manthano), từ tương đương trong tiếng Hy Lạp hiện đại là μαθαίνω (mathaino), cả hai đều có nghĩa là "học." Trong tiếng Việt, "toán" có nghĩa là tính; "toán học" là môn học về toán số.[15] Trong các ngôn ngữ sử dụng từ vựng gốc Hán khác, môn học này lại được gọi là số học.

Sự tiến hóa của toán học có thể nhận thấy qua một loạt gia tăng không ngừng về những phép trừu tượng, hay qua sự mở rộng của nội dung ngành học. Phép trừu tượng đầu tiên, mà nhiều loài động vật có được,[16] có lẽ là về các con số, với nhận thức rằng, chẳng hạn, một nhóm hai quả táo và một nhóm hai quả cam có cái gì đó chung, ở đây là số lượng quả trong mỗi nhóm.

Các bằng chứng khảo cổ học cho thấy, ngoài việc biết đếm những vật thể vật lý, con người thời tiền sử có thể cũng đã biết đếm những đại lượng trừu tượng như thời gian - ngày, mùa, và năm.[17]

Đến khoảng năm 3000 trước Tây lịch thì toán học phức tạp hơn mới xuất hiện, khi người Babylon và người Ai Cập bắt đầu sử dụng số học, đại số, và hình học trong việc tính thuế và những tính toán tài chính khác, trong xây dựng, và trong quan sát thiên văn.[18] Toán học được sử dụng sớm nhất trong thương mại, đo đạc đất đai, hội họa, dệt, và trong việc ghi nhớ thời gian.

Các phép tính số học căn bản trong toán học Babylon (cộng, trừ, nhân, và chia) xuất hiện đầu tiên trong các tài liệu khảo cổ. Giữa năm 600 đến 300 trước Tây lịch, người Hy Lạp cổ đã bắt đầu nghiên cứu một cách có hệ thống về toán học như một ngành học riêng, hình thành nên toán học Hy Lạp.[19] Kể từ đó toán học đã phát triển vượt bậc; sự tương tác giữa toán học và khoa học đã đem lại nhiều thành quả và lợi ích cho cả hai. Ngày nay, những phát minh toán học mới vẫn tiếp tục xuất hiện.

Cảm hứng, thuần túy ứng dụng, và vẻ đẹp[sửa | sửa mã nguồn]

Bài chi tiết: Vẻ đẹp của toán học📷Isaac Newton (1643–1727), một trong những người phát minh ra vi tích phân.

Toán học nảy sinh ra từ nhiều kiểu bài toán khác nhau. Trước hết là những bài toán trong thương mại, đo đạc đất đai, kiến trúc, và sau này là thiên văn học; ngày nay, tất cả các ngành khoa học đều gợi ý những bài toán để các nhà toán học nghiên cứu, ngoài ra còn nhiều bài toán nảy sinh từ chính bản thân ngành toán. Chẳng hạn, nhà vật lý Richard Feynman đã phát minh ra tích phân lộ trình (path integral) cho cơ học lượng tử bằng cách kết hợp suy luận toán học với sự hiểu biết sâu sắc về mặt vật lý, và lý thuyết dây - một lý thuyết khoa học vẫn đang trong giai đoạn hình thành với cố gắng thống nhất tất cả các tương tác cơ bản trong tự nhiên - tiếp tục gợi hứng cho những lý thuyết toán học mới.[20] Một số lý thuyết toán học chỉ có ích trong lĩnh vực đã giúp tạo ra chúng, và được áp dụng để giải các bài toán khác trong lĩnh vực đó. Nhưng thường thì toán học sinh ra trong một lĩnh vực có thể hữu ích trong nhiều lĩnh vực, và đóng góp vào kho tàng các khái niệm toán học.

Các nhà toán học phân biệt ra hai ngành toán học thuần túy và toán học ứng dụng. Tuy vậy các chủ đề toán học thuần túy thường tìm thấy một số ứng dụng, chẳng hạn như lý thuyết số trong ngành mật mã học. Việc ngay cả toán học "thuần túy nhất" hóa ra cũng có ứng dụng thực tế chính là điều mà Eugene Wigner gọi là "sự hữu hiệu đến mức khó tin của toán học".[21] Giống như trong hầu hết các ngành học thuật, sự bùng nổ tri thức trong thời đại khoa học đã dẫn đến sự chuyên môn hóa: hiện nay có hàng trăm lĩnh vực toán học chuyên biệt và bảng phân loại các chủ đề toán học đã dài tới 46 trang.[22] Một vài lĩnh vực toán học ứng dụng đã nhập vào những lĩnh vực liên quan nằm ngoài toán học và trở thành những ngành riêng, trong đó có xác suất, vận trù học, và khoa học máy tính.

Những ai yêu thích ngành toán thường thấy toán học có một vẻ đẹp nhất định. Nhiều nhà toán học nói về "sự thanh lịch" của toán học, tính thẩm mỹ nội tại và vẻ đẹp bên trong của nó. Họ coi trọng sự giản đơn và tính tổng quát. Vẻ đẹp ẩn chứa cả bên trong những chứng minh toán học đơn giản và gọn nhẹ, chẳng hạn chứng minh của Euclid cho thấy có vô hạn số nguyên tố, và trong những phương pháp số giúp đẩy nhanh các phép tính toán, như phép biến đổi Fourier nhanh. Trong cuốn sách Lời bào chữa của một nhà toán học (A Mathematician's Apology) của mình, G. H. Hardy tin rằng chính những lý do về mặt thẩm mỹ này đủ để biện minh cho việc nghiên cứu toán học thuần túy. Ông nhận thấy những tiêu chuẩn sau đây đóng góp vào một vẻ đẹp toán học: tầm quan trọng, tính không lường trước được, tính không thể tránh được, và sự ngắn gọn.[23] Sự phổ biến của toán học vì mục đích giải trí là một dấu hiệu khác cho thấy nhiều người tìm thấy sự sảng khoái trong việc giải toán...

Ký hiệu, ngôn ngữ, tính chặt chẽ[sửa | sửa mã nguồn]

Bài chi tiết: Danh sách ký hiệu toán học📷Leonhard Euler, người tạo ra và phổ biến hầu hết các ký hiệu toán học được dùng ngày nay.

Hầu hết các ký hiệu toán học đang dùng ngày nay chỉ mới được phát minh vào thế kỷ 16.[24] Trước đó, toán học được viết ra bằng chữ, quá trình nhọc nhằn này đã cản trở sự phát triển của toán học.[25] Euler (1707–1783) là người tạo ra nhiều trong số những ký hiệu đang được dùng ngày nay. Ký hiệu hiện đại làm cho toán học trở nên dễ hơn đối với chuyên gia toán học, nhưng người mới bắt đầu học toán thường thấy nản lòng. Các ký hiệu cực kỳ ngắn gọn: một vài biểu tượng chứa đựng rất nhiều thông tin. Giống ký hiệu âm nhạc, ký hiệu toán học hiện đại có cú pháp chặt chẽ và chứa đựng thông tin khó có thể viết theo một cách khác đi.

Ngôn ngữ toán học có thể khó hiểu đối với người mới bắt đầu. Những từ như hoặc và chỉ có nghĩa chính xác hơn so với trong lời nói hàng ngày. Ngoài ra, những từ như mở và trường đã được cho những nghĩa riêng trong toán học. Những thuật ngữ mang tính kỹ thuật như phép đồng phôi và khả tích có nghĩa chính xác trong toán học. Thêm vào đó là những cụm từ như nếu và chỉ nếu nằm trong thuật ngữ chuyên ngành toán học. Có lý do tại sao cần có ký hiệu đặc biệt và vốn từ vựng chuyên ngành: toán học cần sự chính xác hơn lời nói thường ngày. Các nhà toán học gọi sự chính xác này của ngôn ngữ và logic là "tính chặt chẽ."

Các lĩnh vực toán học[sửa | sửa mã nguồn]

Bài chi tiết: Các lĩnh vực toán học

Nói chung toán học có thể được chia thành các ngành học về lượng, cấu trúc, không gian, và sự thay đổi (tức là số học, đại số, hình học, và giải tích). Ngoài những mối quan tâm chính này, toán học còn có những lĩnh vực khác khảo sát mối quan hệ giữa toán học và những ngành khác, như với logic và lý thuyết tập hợp, toán học thực nghiệm trong những ngành khoa học khác nhau (toán học ứng dụng), và gần đây hơn là sự nghiên cứu chặt chẽ về tính bất định.

Nền tảng và triết học[sửa | sửa mã nguồn]

📷Kurt Gödel là một trong những nhà logic toán học lớn, với các định lý bất toàn.

Để làm rõ nền tảng toán học, lĩnh vực logic toán học và lý thuyết tập hợp đã được phát triển. Logic toán học bao gồm nghiên cứu toán học về logic và ứng dụng của logic hình thức trong những lĩnh vực toán học khác. Lý thuyết tập hợp là một nhánh toán học nghiên cứu các tập hợp hay tập hợp những đối tượng. Lý thuyết phạm trù, liên quan đến việc xử lý các cấu trúc và mối quan hệ giữa chúng bằng phương pháp trừu tượng, vẫn đang tiếp tục phát triển. Cụm từ "khủng hoảng nền tảng" nói đến công cuộc tìm kiếm một nền tảng toán học chặt chẽ diễn ra từ khoảng năm 1900 đến 1930.[26] Một số bất đồng về nền tảng toán học vẫn còn tồn tại cho đến ngày nay. Cuộc khủng hoảng nền tảng nổi lên từ một số tranh cãi thời đó, trong đó có những tranh cãi liên quan đến lý thuyết tập hợp của Cantor và cuộc tranh cãi giữa Brouwer và Hilbert.

Khoa học máy tính lý thuyết bao gồm lý thuyết khả tính (computability theory), lý thuyết độ phức tạp tính toán, và lý thuyết thông tin. Lý thuyết khả tính khảo sát những giới hạn của những mô hình lý thuyết khác nhau về máy tính, bao gồm mô hình máy Turing nổi tiếng. Lý thuyết độ phức tạp nghiên cứu khả năng có thể giải được bằng máy tính; một số bài toán, mặc dù về lý thuyết có thể giải được bằng máy tính, cần thời gian hay không gian tính toán quá lớn, làm cho việc tìm lời giải trong thực tế gần như không thể, ngay cả với sự tiến bộ nhanh chóng của phần cứng máy tính. Một ví dụ là bài toán nổi tiếng "P = NP?".[27] Cuối cùng, lý thuyết thông tin quan tâm đến khối lượng dữ liệu có thể lưu trữ được trong một môi trường lưu trữ nhất định, và do đó liên quan đến những khái niệm như nén dữ liệu và entropy thông tin.

{\displaystyle p\Rightarrow q\,}📷📷📷📷Logic toán họcLý thuyết tập hợpLý thuyết phạm trùLý thuyết tính toán

Toán học thuần túy[sửa | sửa mã nguồn]

Lượng[sửa | sửa mã nguồn]

Việc nghiên cứu về lượng (quantity) bắt đầu với các con số, trước hết với số tự nhiên và số nguyên và các phép biến đổi số học, nói đến trong lĩnh vực số học. Những tính chất sâu hơn về các số nguyên được nghiên cứu trong lý thuyết số, trong đó có định lý lớn Fermat nổi tiếng. Trong lý thuyết số, giả thiết số nguyên tố sinh đôi và giả thiết Goldbach là hai bài toán chưa giải được.

Khi hệ thống số được phát triển thêm, các số nguyên được xem như là tập con của các số hữu tỉ. Các số này lại được bao gồm trong số thực vốn được dùng để thể hiện những đại lượng liên tục. Số thực được tổng quát hóa thành số phức. Đây là những bước đầu tiên trong phân bố các số, sau đó thì có các quaternion (một sự mở rộng của số phức) và octonion. Việc xem xét các số tự nhiên cũng dẫn đến các số vô hạn (transfinite numbers), từ đó chính thức hóa khái niệm "vô hạn". Một lĩnh vực nghiên cứu khác là kích cỡ (size), từ đó sinh ra số đếm (cardinal numbers) và rồi một khái niệm khác về vô hạn: số aleph, cho phép thực hiện so sánh có ý nghĩa kích cỡ của các tập hợp lớn vô hạn.

{\displaystyle 1,2,3,\ldots \!}📷{\displaystyle \ldots ,-2,-1,0,1,2\,\ldots \!}📷{\displaystyle -2,{\frac {2}{3}},1.21\,\!}📷{\displaystyle -e,{\sqrt {2}},3,\pi \,\!}📷{\displaystyle 2,i,-2+3i,2e^{i{\frac {4\pi }{3}}}\,\!}📷Số tự nhiênSố nguyênSố hữu tỉSố thựcSố phức

Cấu trúc[sửa | sửa mã nguồn]

Nhiều đối tượng toán học, chẳng hạn tập hợp những con số và những hàm số, thể hiện cấu trúc nội tại toát ra từ những phép biến đổi toán học hay những mối quan hệ được xác định trên tập hợp. Toán học từ đó nghiên cứu tính chất của những tập hợp có thể được diễn tả dưới dạng cấu trúc đó; chẳng hạn lý thuyết số nghiên cứu tính chất của tập hợp những số nguyên có thể được diễn tả dưới dạng những phép biến đổi số học. Ngoài ra, thường thì những tập hợp có cấu trúc (hay những cấu trúc) khác nhau đó thể hiện những tính chất giống nhau, khiến người ta có thể xây dựng nên những tiên đề cho một lớp cấu trúc, rồi sau đó nghiên cứu đồng loạt toàn bộ lớp cấu trúc thỏa mãn những tiên đề này. Do đó người ta có thể nghiên cứu các nhóm, vành, trường, và những hệ phức tạp khác; những nghiên cứu như vậy (về những cấu trúc được xác định bởi những phép biến đổi đại số) tạo thành lĩnh vực đại số trừu tượng. Với mức độ tổng quát cao của mình, đại số trừu tượng thường có thể được áp dụng vào những bài toán dường như không liên quan gì đến nhau. Một ví dụ về lý thuyết đại số là đại số tuyến tính, lĩnh vực nghiên cứu về các không gian vectơ, ở đó những yếu tố cấu thành nó gọi là vectơ có cả lượng và hướng và chúng có thể được dùng để mô phỏng các điểm (hay mối quan hệ giữa các điểm) trong không gian. Đây là một ví dụ về những hiện tượng bắt nguồn từ những lĩnh vực hình học và đại sốban đầu không liên quan gì với nhau nhưng lại tương tác rất mạnh với nhau trong toán học hiện đại. Toán học tổ hợp nghiên cứu những cách tính số lượng những đối tượng có thể xếp được vào trong một cấu trúc nhất định.

{\displaystyle {\begin{matrix}(1,2,3)&(1,3,2)\\(2,1,3)&(2,3,1)\\(3,1,2)&(3,2,1)\end{matrix}}}📷📷📷📷📷📷Toán học tổ hợpLý thuyết sốLý thuyết nhómLý thuyết đồ thịLý thuyết trật tựĐại số

Không gian[sửa | sửa mã nguồn]

Việc nghiên cứu không gian bắt đầu với hình học - cụ thể là hình học Euclid. Lượng giác là một lĩnh vực toán học nghiên cứu về mối quan hệ giữa các cạnh và góc của tam giác và với các hàm lượng giác; nó kết hợp không gian và các con số, và bao gồm định lý Pythagore nổi tiếng. Ngành học hiện đại về không gian tổng quát hóa những ý tưởng này để bao gồm hình học nhiều chiều hơn, hình học phi Euclide (đóng vai trò quan trọng trong lý thuyết tương đối tổng quát), và tô pô. Cả lượng và không gian đều đóng vai trò trong hình học giải tích, hình học vi phân, và hình học đại số. Hình học lồi và hình học rời rạc trước đây được phát triển để giải các bài toán trong lý thuyết số và giải tích phiếm hàm thì nay đang được nghiên cứu cho các ứng dụng trong tối ưu hóa (tối ưu lồi) và khoa học máy tính (hình học tính toán). Trong hình học vi phân có các khái niệm bó sợi (fiber bundles) và vi tích phân trên các đa tạp, đặc biệt là vi tích phân vectơ và vi tích phân tensor. Hình học đại số thì mô tả các đối tượng hình học dưới dạng lời giải là những tập hợp phương trình đa thức, cùng với những khái niệm về lượng và không gian, cũng như nghiên cứu về các nhóm tô-pô kết hợp cấu trúc và không gian. Các nhóm Lie được dùng để nghiên cứu không gian, cấu trúc, và sự thay đổi. Tô pô trong tất cả những khía cạnh của nó có thể là một lĩnh vực phát triển vĩ đại nhất của toán học thế kỷ 20; nó bao gồm tô-pô tập hợp điểm (point-set topology), tô-pô lý thuyết tập hợp (set-theoretic topology), tô-pô đại số và tô-pô vi phân (differential topology). Trong đó, những chủ đề của tô-pô hiện đại là lý thuyết không gian mêtric hóa được (metrizability theory), lý thuyết tập hợp tiên đề (axiomatic set theory), lý thuyết đồng luân (homotopy theory), và lý thuyết Morse. Tô-pô cũng bao gồm giả thuyết Poincaré nay đã giải được, và giả thuyết Hodge vẫn chưa giải được. Những bài toán khác trong hình học và tô-pô, bao gồm định lý bốn màu và giả thiết Kepler, chỉ giải được với sự trợ giúp của máy tính.

📷📷📷📷📷📷Hình họcLượng giácHình học vi phânTô pôHình học fractalLý thuyết về độ đo

Sự thay đổi[sửa | sửa mã nguồn]

Hiểu và mô tả sự thay đổi là chủ đề thường gặp trong các ngành khoa học tự nhiên. Vi tích phân là một công cụ hiệu quả đã được phát triển để nghiên cứu sự thay đổi đó. Hàm sốtừ đây ra đời, như một khái niệm trung tâm mô tả một đại lượng đang thay đổi. Việc nghiên cứu chặt chẽ các số thực và hàm số của một biến thực được gọi là giải tích thực, với số phức thì có lĩnh vực tương tự gọi là giải tích phức. Giải tích phiếm hàm (functional analysis) tập trung chú ý vào những không gian thường là vô hạn chiều của hàm số. Một trong nhiều ứng dụng của giải tích phiếm hàm là trong cơ học lượng tử (ví dụ: lý thuyết phiếm hàm mật độ). Nhiều bài toán một cách tự nhiên dẫn đến những mối quan hệ giữa lượng và tốc độ thay đổi của nó, rồi được nghiên cứu dưới dạng các phương trình vi phân. Nhiều hiện tượng trong tự nhiên có thể được mô tả bằng những hệ thống động lực; lý thuyết hỗn độn nghiên cứu cách thức theo đó nhiều trong số những hệ thống động lực này thể hiện những hành vi không tiên đoán được nhưng vẫn có tính tất định.

📷📷📷📷📷📷Vi tích phânVi tích phân vec-tơPhương trình vi phânHệ thống động lựcLý thuyết hỗn độnGiải tích phức

Toán học ứng dụng[sửa | sửa mã nguồn]

Toán học ứng dụng quan tâm đến những phương pháp toán học thường được sử dụng trong khoa học, kỹ thuật, kinh doanh, và công nghiệp. Như vậy, "toán học ứng dụng" là một ngành khoa học toán học với kiến thức đặc thù. Thuật ngữ toán học ứng dụng cũng được dùng để chỉ lĩnh vực chuyên nghiệp, ở đó các nhà toán học giải quyết các bài toán thực tế. Với tư cách là một ngành nghề chú trọng vào các bài toán thực tế, toán học ứng dụng tập trung vào "việc thiết lập, nghiên cứu, và sử dụng những mô hình toán học" trong khoa học, kỹ thuật, và những lĩnh vực thực hành toán học khác. Trước đây, những ứng dụng thực tế đã thúc đẩy sự phát triển các lý thuyết toán học, để rồi sau đó trở thành chủ đề nghiên cứu trong toán học thuần túy, nơi toán học được phát triển chủ yếu cho chính nó. Như vậy, hoạt động của toán học ứng dụng nhất thiết có liên hệ đến nghiên cứu trong lĩnh vực toán học thuần túy.

Thống kê và những lĩnh vực liên quan[sửa | sửa mã nguồn]

Toán học ứng dụng có nhiều phần chung với thống kê, đặc biệt với lý thuyết xác suất. Các nhà thống kê, khi làm việc trong một công trình nghiên cứu, "tạo ra số liệu có ý nghĩa" sử dụng phương pháp tạo mẫu ngẫu nhiên (random sampling) và những thí nghiệm được ngẫu nhiên hóa (randomized experiments);[28] việc thiết kế thí nghiệm hay mẫu thống kê xác định phương pháp phân tích số liệu (trước khi số liệu được tạo ra). Khi xem xét lại số liệu từ các thí nghiệm và các mẫu hay khi phân tích số liệu từ những nghiên cứu bằng cách quan sát, các nhà thống kê "làm bật ra ý nghĩa của số liệu" sử dụng phương pháp mô phỏng và suy luận – qua việc chọn mẫu và qua ước tính; những mẫu ước tính và những tiên đoán có được từ đó cần được thử nghiệm với những số liệu mới.[29]

Lý thuyết thống kê nghiên cứu những bài toán liên quan đến việc quyết định, ví dụ giảm thiểu nguy cơ (sự tổn thất được mong đợi) của một hành động mang tính thống kê, chẳng hạn sử dụng phương pháp thống kê trong ước tính tham số, kiểm nghiệm giả thuyết, và chọn ra tham số cho kết quả tốt nhất. Trong những lĩnh vực truyền thống này của thống kê toán học, bài toán quyết định-thống kê được tạo ra bằng cách cực tiểu hóa một hàm mục tiêu (objective function), chẳng hạn giá thành hay sự mất mát được mong đợi, dưới những điều kiện nhất định.[30] Vì có sử dụng lý thuyết tối ưu hóa, lý thuyết toán học về thống kê có chung mối quan tâm với những ngành khoa học khác nghiên cứu việc quyết định, như vận trù học, lý thuyết điều khiển, và kinh tế học toán.[31]

Toán học tính toán[sửa | sửa mã nguồn]

Toán học tính toán đưa ra và nghiên cứu những phương pháp giải các bài toán toán học mà con người thường không có khả năng giải số được. Giải tích số nghiên cứu những phương pháp giải các bài toán trong giải tích sử dụng giải tích phiếm hàm và lý thuyết xấp xỉ; giải tích số bao gồm việc nghiên cứu xấp xỉ và rời rạc hóa theo nghĩa rộng, với sự quan tâm đặc biệt đến sai số làm tròn (rounding errors). Giải tích số và nói rộng hơn tính toán khoa học (scientific computing) cũng nghiên cứu những chủ đề phi giải tích như khoa học toán học, đặc biệt là ma trận thuật toán và lý thuyết đồ thị. Những lĩnh vực khác của toán học tính toán bao gồm đại số máy tính (computer algebra) và tính toán biểu tượng(symbolic computation).

📷📷📷📷📷📷📷Vật lý toán họcThủy động lực họcGiải tích sốTối ưu hóaLý thuyết xác suấtThống kêMật mã học📷📷📷📷📷 📷📷Tài chính toánLý thuyết trò chơiSinh học toánHóa học toánToán sinh họcKinh tế toánLý thuyết điều khiển

Giải thưởng toán học và những bài toán chưa giải được[sửa | sửa mã nguồn]

Có thể nói giải thưởng toán học danh giá nhất là Huy chương Fields,[32][33] thiết lập vào năm 1936 và nay được trao bốn năm một lần cho 2 đến 4 nhà toán học có độ tuổi dưới 40. Huy chương Fields thường được xem là tương đương với Giải Nobel trong những lĩnh vực khác. (Giải Nobel không xét trao thưởng trong lĩnh vực toán học) Một số giải thưởng quốc tế quan trọng khác gồm có: Giải Wolf về Toán học (thiết lập vào năm 1978) để ghi nhận thành tựu trọn đời; Giải Abel (thiết lập vào năm 2003) dành cho những nhà toán học xuất chúng; Huy chương Chern (thiết lập vào năm 2010) để ghi nhận thành tựu trọn đời.

Năm 1900, nhà toán học người Đức David Hilbert biên soạn một danh sách gồm 23 bài toán chưa có lời giải (còn được gọi là Các bài toán của Hilbert). Danh sách này rất nổi tiếng trong cộng đồng các nhà toán học, và ngày nay có ít nhất chín bài đã được giải. Một danh sách mới bao gồm bảy bài toán quan trọng, gọi là "Các bài toán của giải thiên niên kỷ" (Millennium Prize Problems), đã được công bố vào năm 2000, ai giải được một trong số các bài toán này sẽ được trao giải một triệu đô-la. Chỉ có một bài toán từ danh sách của Hilbert (cụ thể là giả thuyết Riemann) trong danh sách mới này. Tới nay, một trong số bảy bài toán đó (giả thuyết Poincaré) đã có lời giải.

Mối quan hệ giữa toán học và khoa học[sửa | sửa mã nguồn]

Carl Friedrich Gauss, người được xem là "hoàng tử của toán học."[34]

Gauss xem toán học là "nữ hoàng của các ngành khoa học".[35] Trong cụm từ La-tinh Regina Scientiarum và cụm từ tiếng Đức Königin der Wissenschaften (cả hai đều có nghĩa là "nữ hoàng của các ngành khoa học"), từ chỉ "khoa học" có nghĩa là "lĩnh vực tri thức," và đây cũng chính là nghĩa gốc của từ science (khoa học) trong tiếng Anh; như vậy toán học là một lĩnh vực tri thức. Sự chuyên biệt hóa giới hạn nghĩa của "khoa học" vào "khoa học tự nhiên" theo sau sự phát triển của phương pháp luận Bacon, từ đó đối lập "khoa học tự nhiên" với phương pháp kinh viện, phương pháp luận Aristotle nghiên cứu từ những nguyên lý cơ sở. So với các ngành khoa học tự nhiên như sinh học hay vật lý học thì thực nghiệm và quan sát thực tế có vai trò không đáng kể trong toán học. Albert Einstein nói rằng "khi các định luật toán học còn phù hợp với thực tại thì chúng không chắc chắn; và khi mà chúng chắc chắn thì chúng không còn phù hợp với thực tại."[36] Mới đây hơn, Marcus du Sautoy đã gọi toán học là "nữ hoàng của các ngành khoa học;... động lực thúc đẩy chính đằng sau những phát kiến khoa học."[37]

Nhiều triết gia tin rằng, trong toán học, tính có thể chứng minh được là sai (falsifiability) không thể thực hiện được bằng thực nghiệm, và do đó toán học không phải là một ngành khoa học theo như định nghĩa của Karl Popper.[38] Tuy nhiên, trong thập niên 1930, các định lý về tính không đầy đủ (incompleteness theorems) của Gödel đưa ra gợi ý rằng toán học không thể bị quy giảm về logic mà thôi, và Karl Popper kết luận rằng "hầu hết các lý thuyết toán học, giống như các lý thuyết vật lý và sinh học, mang tính giả định-suy diễn: toán học thuần túy do đó trở nên gần gũi hơn với các ngành khoa học tự nhiên nơi giả định mang tính chất suy đoán hơn hơn mức mà người ta nghĩ."[39]

Một quan điểm khác thì cho rằng một số lĩnh vực khoa học nhất định (như vật lý lý thuyết) là toán học với những tiên đề được tạo ra để kết nối với thực tại. Thực sự, nhà vật lý lý thuyết J. M. Ziman đã cho rằng khoa học là "tri thức chung" và như thế bao gồm cả toán học.[40] Dù sao đi nữa, toán học có nhiều điểm chung với nhiều lĩnh vực trong các ngành khoa học vật lý, đáng chú ý là việc khảo sát những hệ quả logic của các giả định. Trực giác và hoạt động thực nghiệm cũng đóng một vai trò trong việc xây dựng nên các giả thuyết trong toán học lẫn trong những ngành khoa học (khác). Toán học thực nghiệm ngày càng được chú ý trong bản thân ngành toán học, và việc tính toán và mô phỏng đang đóng vai trò ngày càng lớn trong cả khoa học lẫn toán học.

Ý kiến của các nhà toán học về vấn đề này không thống nhất. Một số cảm thấy việc gọi toán học là khoa học làm giảm tầm quan trọng của khía cạnh thẩm mỹ của nó, và lịch sử của nó trong bảy môn khai phóng truyền thống; một số người khác cảm thấy rằng bỏ qua mối quan hệ giữa toán học và các ngành khoa học là cố tình làm ngơ trước thực tế là sự tương tác giữa toán học và những ứng dụng của nó trong khoa học và kỹ thuật đã là động lực chính của những phát triển trong toán học. Sự khác biệt quan điểm này bộc lộ trong cuộc tranh luận triết học về chuyện toán học "được tạo ra" (như nghệ thuật) hay "được khám phá ra" (như khoa học). Các viện đại học thường có một trường hay phân khoa "khoa học và toán học".[41] Cách gọi tên này ngầm ý rằng khoa học và toán học gần gũi với nhau nhưng không phải là một.

0
Trong nhiều thập kỷ, các chuyên gia đã cố gắng hiểu và giải thích lý do tại sao có rất nhiều cặp hành tinh nằm ngoài Hệ Mặt Trời của chúng ta có cấu hình bất thường như vậy.Những lần quan sát đã cho thấy nhiều hành tinh trong quỹ đạo bất thường dường như bị đẩy ra xa nhau, nhưng không biết lực nào gây ra như vậy.Nhưng giờ đây, các nhà thiên văn học cho rằng họ đã tìm ra câu trả...
Đọc tiếp

Trong nhiều thập kỷ, các chuyên gia đã cố gắng hiểu và giải thích lý do tại sao có rất nhiều cặp hành tinh nằm ngoài Hệ Mặt Trời của chúng ta có cấu hình bất thường như vậy.

Những lần quan sát đã cho thấy nhiều hành tinh trong quỹ đạo bất thường dường như bị đẩy ra xa nhau, nhưng không biết lực nào gây ra như vậy.

Nhưng giờ đây, các nhà thiên văn học cho rằng họ đã tìm ra câu trả lời. Họ thấy rằng có lực kỳ lạ cân bằng trên các cực hành tinh ngoại vi đã kéo chúng ra xa trọng tâm.

Khám phá mới này giúp các nhà thiên văn học hiểu được cấu trúc, khí hậu và khả năng sinh sống của các hành tinh ngoại vi, trong khi chúng ta đang săn tìm hành tinh khác giống như Trái Đất.

Để hiểu những chi tiết kỳ lạ này, chúng ta trông chờ vào kính viễn vọng Kepler của NASA đang khám phá vũ trụ tìm các hành tinh ngoại vi. Kepler đã phát hiện ra rằng có đến 30% các ngôi sao giống với Mặt Trời, rồi đến các hành tinh được mệnh danh là Siêu Trái Đất.

Siêu Trái Đất thường lớn hơn Trái Đất, nhưng nhỏ hơn Sao Hải Vương. Thông thường, chúng quay quanh ngôi sao chủ của theo quỹ đạo tròn mất khoảng 100 ngày.

Thật thú vị, các nhà thiên văn học đã phát hiện ra rằng hầu hết các hành tinh này quay khoanh tròn thành từng cặp ngôi sao, với quỹ đạo kỳ lạ và không ổn định.

Sau khi thu thập đủ dữ liệu từ quan sát, các nhà khoa học tin rằng các tính năng kỳ quặc có thể được giải thích bằng hiện tượng được gọi là độ lệch xiên, nêu ra vì sao chúng bị nghiêng giữa trục và quỹ đạo.

Các nhà thiên văn học từ Đại học Yale (Mỹ) cho rằng một số các hành tinh này bị nghiêng đầu nên đẩy chúng ra xa nhau hơn.

Khi các hành tinh này có độ nghiêng dọc trục lớn, trái ngược với độ nghiêng nhỏ hoặc không nghiêng, thủy triều của chúng có tác dụng biến năng lượng quỹ đạo thành nhiệt trong các hành tinh. Lúc này, sự phân tán thủy triều mạnh mẽ ngăn cách các quỹ đạo.

Thật kỳ lạ, khi hiện tượng như vậy xảy ra trong Hệ Mặt Trời nếu chúng ta nhìn vào Trái Đất và Mặt trăng. Quỹ đạo Mặt Trăng dường như phát triển chậm, nhưng ngày trên Trái Đất đang kéo dài ra, khi Trái Đất và Mặt Trăng di chuyển xa hơn.

Thế nhưng, độ nghiêng kỳ lạ mang tính quyết định nhiều tính năng của các hành tinh. Nó tác động đến một số đặc điểm vật lý, như khí hậu, thời tiết và lưu thông toàn cầu.

Các mùa trên một hành tinh có độ nghiêng trục dọc khắc nghiệt hơn nhiều so với các mùa trên một hành tinh được sắp xếp hợp lý và các kiểu thời tiết của chúng có lẽ không quan trọng.

Theo khoahoc.tv Từ: Võ Lâm Anh

0
BẠN CÓ BIẾT QUAN HỆ GIỮA THIÊN VĂN VÀ KHÍ TƯỢNG ? Ngày xưa, khi xét về một người có kiến thức uyên bác, người ta nói: "(ông ta) trên hiểu thiên văn, dưới tường địa lý". "Trên hiểu thiên văn" bao gồm hiểu biết kiến thức về khí tượng. Ngày nay vẫn còn không ít người chịu ảnh hưởng của nhận xét đó, họ lẫn lộn mối quan hệ giữa hai ngành khoa học thiên văn và khoa học khí tượng....
Đọc tiếp

BẠN CÓ BIẾT QUAN HỆ GIỮA THIÊN VĂN VÀ KHÍ TƯỢNG ?

Ngày xưa, khi xét về một người có kiến thức uyên bác, người ta nói: "(ông ta) trên hiểu thiên văn, dưới tường địa lý". "Trên hiểu thiên văn" bao gồm hiểu biết kiến thức về khí tượng. Ngày nay vẫn còn không ít người chịu ảnh hưởng của nhận xét đó, họ lẫn lộn mối quan hệ giữa hai ngành khoa học thiên văn và khoa học khí tượng. Thời cổ đại, các môn khoa học tự nhiên đều mới ở dạng manh nha, bởi vậy thường có hiện tượng hai môn học hoặc nhiều môn khoa học lẫn lộn với nhau. Người xưa cho rằng thiên văn học và khí tượng học đều đều là nghiên cứu "ông trời" nên đã coi hai môn khoa học đó như nhau. Nhưng ngày nay khi thiên văn học và khí tượng học đã có những bước phát triển lớn, hai ngành khoa học này càng có nội dung khác nhau.

Thiên văn học là khoa học nghiên cứu các thiên thể, chủ yếu là nghiên cứu sự chuyển động của thiên thể, tác dụng qua lại lẫn nhau giữa các thiên thể, điều kiện vật lý và nguồn gốc của các thiên thể đó. Nếu chúng ta coi trái đất là một hành tinh trong hệ Mặt trời và nghiên cứu nó như một thiên thể, thì Trái đất cũng là đối tượng nghiên cứu của thiên văn học.

Đối tượng nghiên cứu của khí tượng học là tầng khí quyển của trái đất. Nếu bạn lần lượt đọc cuốn "Thiên văn" và "Khí tượng" trong bộ sách "Mười vạn câu hỏi vì sao" thì bạn sẽ phân biệt rất rõ đối tượng nghiên cứu của thiên văn học và khí tượng học.

Thiên văn học và khí tựơng học là ngành khoa học khác nhau, vậy phải chăng chúng hoàn toàn không liên quan gì với nhau? Không phải! Thời tiết thay đổi chủ yếu là do sự chuyển động tầng khí quyển của Trái đất gây ra, nhưng một số nhân tố thiên văn cũng có thể ảnh hưởng tới sự thay đổi của thời tiết, trong đó hoạt động của Mặt trời có ảnh hưởng rất quan trọng tới thay đổi thời tiết lâu dài của Trái đất. Ví dụ trong

vòng 70 năm sau Công nguyên từ 1645-1715 và trong vòng 90 năm Công nguyên từ 1460-1550 đều là thời kỳ hoạt động cực tiểu của Mặt trời, trong hai thời kỳ này nhiệt độ của Trái đất đều lạnh, nhiệt độ bình quân của trái đất giảm 0,5-1°C, ngược lại trong thời kỳ Trung thế kỷ, nhiệt độ của Trái đất có tăng lên đúng vào thời kỳ hoạt động cực đại của Mặt trời.

Ngoài Mặt trời còn có một số thiên thể cúng tác động tới thời tiét trên Trái đất. Có người cho rằng, sức hút của Mặt trăng và Mặt trời ngoài việc gây ra thuỷ Triều lên xuống của các đại dương còn gây ra sự thay đổi tầng khí quyển của trái đất, ảnh hưởng tới các luồng không khí tuần hoàn trong khí quyển. Những mảnh sao băng mà chúng ta nhìn thấy vào ban đêm cũng ảnh hưởng thời tiết thay đổi. Ví dụ trời mưa phải có đủ hai điều kiện: một là trong không trung phải có đủ hơi nước; hai là phải có một lượng bụi nhất định hoặc những hạt tích điện để ngưng đọng hơi nước thành hạt mưa. Những mảnh sao băng bị cháy vụn tan thành vô số hạt bụi nhỏ hút hơi nước và ngưng đọng thành những hạt mưa.

Nếu chúng ta hiểu rõ được ảnh hưởng của thiên văn đối với thay đổi thời tiết, chúng ta sẽ có thể áp dụng những thành quả nghiên cứu thiên văn vào việc dự báo thời tiết chính xác hơn. Qua đời sống và lao động sản xuất, ông cha ta xưa kia đã tích luỹ được nhiều kinh nghiệm dự báo thời tiết rất phong phú, trong đó nhiều câu tục ngữ dự báo thời tiết đã căn cứ vào những yếu tố thiên văn.

Việc quan trắc thiên văn cũng đòi hỏi có điều kiện thời tiết nhất định. Ví dụ gặp buổi trời mưa, trời râm, thì kính viễn vọng quang học sẽ không sử dụng được. Bởi vậy dự báo thời tiết chính xác sẽ giúp ích nhiều cho công việc nghiên cứu thiên văn.

3
19 tháng 1 2019

Cho mình xin nguồn bạn ưi :3

19 tháng 1 2019

mk biết được cái này trong sách và gõ ra cho các bn đọc đó chứ mk đâu có chép mạng, mk làm lâu lắm đó

NHỮNG ĐÀI THIÊN VĂN LẮP TRÊN CÁC VỆ TINH NHÂN TẠO PHÁT HIỆN NHỮNG GÌ VỀ VŨ TRỤ ? Con người có được nhiều phát hiện mới quan trọng thu được từ các đài thiên văn lắp trên các vệ tinh nhân tạo. Những phát hiện này không phải bắt đầu từ những ánh sáng có thể nhìn thấy được, cũng không phải từ sóng điện radio mà từ tia X. Kết quả qua trắc tỏ rõ, giữa các thiên thể đầy rẫy...
Đọc tiếp

NHỮNG ĐÀI THIÊN VĂN LẮP TRÊN CÁC VỆ TINH NHÂN TẠO PHÁT HIỆN NHỮNG GÌ VỀ VŨ TRỤ ?

Con người có được nhiều phát hiện mới quan trọng thu được từ các đài thiên văn lắp trên các vệ tinh nhân tạo. Những phát hiện này không phải bắt đầu từ những ánh sáng có thể nhìn thấy được, cũng không phải từ sóng điện radio mà từ tia X. Kết quả qua trắc tỏ rõ, giữa các thiên thể đầy rẫy những đám mây khinh khí nóng với nhiệt độ cực cao và phát ra một lượng lớn tia X. Nếu như trong tất cả các hệ sao đều tồn tại phổ biến loại vật chất trong không gian này thì rất có thể vũ trụ có đủ trọng lượng để hình thành hình thức đóng kín và trở thành một hệ thống giao động vĩnh viễn. Nếu vũ trụ là đóng kín thì chúng ta sẽ có một suy luận rất tuyệt dịu nhưng cũng hết sức đau đầu bởi từ góc độ khoa học hay từ các góc độ khác, suy luận này hết sức hấp dẫn nhưng lại chẳng có cách nào chứng minh được. Sự suy luận này là vũ trụ của chúng ta bao gồm cả các hệ sao xa nhất cũng chỉ là một hạt bụi nhỏ, một hạt cơ bản của một vũ trụ khác to lớn hơn và vũ trụ to lớn hơn này chúng ta không bao giờ nhìn thấy được và nó cũng lại chỉ là một hạt cơ bản của một vũ trụ khác to lớn hơn nó... và cứ như vậy không bao giờ hết.

0
Chương I. Sự hình thành vũ trụ và hệ mặt trời.- Ban đầu là một cõi hỗn mang, không lí thuyết nào có thể mô tả được. Tại một điểm kì dị, ánh sáng bùng phát khai sinh ra vật chất, năng lượng, thời gian và không gian. Đó là vụ nổ Bigbang - vụ nổ của sự sáng thế. - BigBang tạo ra vật chất và phản vật chất. Hai loại này kết hợp với nhau tạo ra ánh sáng lan tỏa khắp vũ trụ. Vật...
Đọc tiếp

Chương I. Sự hình thành vũ trụ và hệ mặt trời.

- Ban đầu là một cõi hỗn mang, không lí thuyết nào có thể mô tả được. Tại một điểm kì dị, ánh sáng bùng phát khai sinh ra vật chất, năng lượng, thời gian và không gian. Đó là vụ nổ Bigbang - vụ nổ của sự sáng thế.

- BigBang tạo ra vật chất và phản vật chất. Hai loại này kết hợp với nhau tạo ra ánh sáng lan tỏa khắp vũ trụ. Vật chất còn sót lại dưới dạng các đám khí loãng. Sau thời gian dài, lực hấp dẫn khiến các đám mây khí tụ lại sinh ra các ngân hà, các hành tinh....

- 10 tỷ năm sau BigBang, ngoài rìa của dải Ngân Hà có một ngôi sao đang tàn lụi. Nó suy sụp do lực hấp dẫn và kết thúc cuộc đời mình bằng 1 vụ nổ sinh ra 1 đám khí, có thành phần chính là Hydro. Dưới tác dụng của lực xung kích từ các vụ nổ siêu tân tinh, các đám khí dần tụ lại và chuyển động xoáy tròn quanh tâm. Chính vì chuyển động xoay tròn này phát sinh lực ly tâm khiến cho hệ mặt trời có dạng hình đĩa dẹt.

- BigBang tạo ra vật chất và phản vật chất. Hai loại này kết hợp với nhau tạo ra ánh sáng lan tỏa khắp vũ trụ. Vật chất còn sót lại dưới dạng các đám khí loãng. Sau thời gian dài, lực hấp dẫn khiến các đám mây khí tụ lại sinh ra các ngân hà, các hành tinh....

- 10 tỷ năm sau BigBang, ngoài rìa của dải Ngân Hà có một ngôi sao đang tàn lụi. Nó suy sụp do lực hấp dẫn và kết thúc cuộc đời mình bằng 1 vụ nổ sinh ra 1 đám khí, có thành phần chính là Hydro. Dưới tác dụng của lực xung kích từ các vụ nổ siêu tân tinh, các đám khí dần tụ lại và chuyển động xoáy tròn quanh tâm. Chính vì chuyển động xoay tròn này phát sinh lực ly tâm khiến cho hệ mặt trời có dạng hình đĩa dẹt.

Ghi chú: Vì sao đám khí khi tụ lại thì chúng sẽ chuyển động theo vòng xoáy? Đó là do momen động lượng.
Thực tế các hiện tượng chúng ta quan sát trên Trái Đất cũng cho thấy điều này. Gió từ các hướng tụ vào sinh bão thì cơn bão đó cũng có hình xoáy ốc.

Các hành tinh cũng từ các dòng vật chất xoáy tạo thành, vì vậy chúng quay quanh trục của chính mình, và khối khí tạo thành hệ mặt trời ban đầu cũng chuyển động xoáy nên các hành tinh tạo từ đám khí ấy cũng sẽ theo quán tính mà quay quanh mặt trời.

Như vậy: chuyển động quay quanh trục của hành tinh, chuyển động quay của các hành tinh quanh mặt trời và chuyển động của mặt trời quanh dải Ngân Hà được giải thích là do quán tính ban đầu của khối khí xoáy tạo thành chúng. Hệ mặt trời, dải ngân hà đều có dạng đĩa dẹt là do lực li tâm khi khối khí xoay tròn tạo nên.

Mặt Trời hình thành ở trung tâm của đám khí xoáy, phản ứng nhiệt hạch được kích hoạt. Nó bắt đầu tỏa ra năng lượng và gió mặt trời, thổi bay các loại khí nhẹ ra xa. Do đó mà Kim Tinh, Thủy Tinh và Trái Đất được cấu tạo từ những vật chất nặng như sắt, oxi, silic,...còn các hành tinh xa hơn cấu tạo từ các loại khí nhẹ.

Trái Đất được hình thành không ở quá gần Mặt Trời để bị đốt nóng và không ở quá xa Mặt Trời để bị chìm trong băng giá. Chu kì quay quanh trục của Trái Đất là 24h, cho chúng ta ngày và đêm kéo dài 12h.

Chương II. Trái Đất, những điều kiện hình thành sự sống.

Thuở mới hình thành, hệ mặt trời ắt hẳn còn rất lộn xộn. Vô số các thiên thạch nằm rải rác trên đường đi của các hành tinh và chúng thường xuyên "oanh tạc" các hành tinh này. Những cú va chạm với các thiên thạch cỡ lớn có thể làm nghiêng trục của các hành tinh. Trái Đất cũng là 1 trong số ấy. Những cú va chạm như thế khiến Trục Trái Đất nghiêng đi 1 góc khoảng 23 độ.
Chính vì trục Trái Đất bị nghiêng nên chúng ta mới có được 4 mùa với 4 sắc thái khác nhau.

- Hình thành mặt trăng.

Mặt Trăng là 1 vệ tinh khá kì lạ, nó khá to so với 1 vệ tinh thông thường. Thành phần đá trên mặt Trăng khá giống với Trái Đất (lấy mẫu từ chuyến thám hiểm Mặt Trăng năm 1969).
Có rất nhiều giả thuyết về sự hình thành của Mặt Trăng, giả thuyết được công nhận nhiều nhất là "Mặt Trăng hình thành từ Trái Đất".

Vào thời kì hệ mặt trời còn lộn xộn, một thiên thạch lớn đã đâm sầm vào Trái Đất. Cú va chạm khủng khiếp khiến 1 phần vật chất của Trái Đất văng vào không gian, sau đó tụ lại thành Mặt Trăng. Phần lõi sắt bền vững của thiên thạch chui sâu vào tâm Trái Đất và trở thành lõi Trái Đất. Điều này giải thích tại sao Trái Đất của chúng ta có lõi.

Sự hình thành của mặt Trăng có ý nghĩa rất lớn đối với sự sống. Việc một phần khối lượng của Trái Đất phân bố ra xa khiến momen quán tính của nó tăng lên, tốc độ quay của Trái Đất giảm và quỹ đạo của Trái Đất ổn định hơn. Lực hấp dẫn của Mặt Trăng cũng gây ra hiện tượng thủy triều trên biển, góp phần vào việc tăng đa dạng sinh học.

Có một điều thú vị là thông qua tìm hiểu các hóa thạch sống là "ốc anh vũ", người ta nhận thấy ngày xưa chu kì Mặt Trăng ngắn hơn bây giờ (chỉ có 7, 8 ngày so với 30 ngày hiện tại). Điều này chứng tỏ ngày xưa Mặt Trăng khá gần Trái Đất. Do lực li tâm, Mặt Trăng đang chuyển động xa Trái Đất theo thời gian. Có thể trong tương lai ngày trên Trái Đất sẽ dài hơn.

- Sao chổi mang nước đến hành tinh.

Nước trên Trái Đất từ đâu mà có? Thuở mới hình thành, những cú va chạm mạnh khiến nước không thể tồn tại được trên bề mặt hành tinh. Nước trên Trái Đất có lẽ được mang đến từ những ngôi sao chổi - nguồn nước dồi dào trong hệ mặt trời. Ngoài ra, trên những ngôi sao chổi này có khá nhiều chất hữu cơ - viên gạch của sự sống. Nhiều nhà khoa học cho rằng rất có thể sao chổi chính là "vị thần" gieo sự sống xuống Trái Đất. Bên cạnh đó cũng có nhiều người lại cho rằng sự sống bắt nguồn từ núi lửa.

- Những cấu trúc tạo nên cái nôi cho sự sống.

Ngoài những điều kiện như: sự ổn định của quỹ đạo Trái Đất, nước và các chất hữu cơ gieo mầm sự sống...Trái Đất còn có 1 số cấu trúc đặc biệt để bảo vệ sự sống.

+ Bầu khí quyển: Trái Đất có lực hấp dẫn đủ lớn, cho phép nó có bầu khí quyển của riêng mình. Bầu khí quyển là lá chắn cơ học của sự sống, giúp chúng ta thoát khỏi những vụ va chạm với thiên thạch cỡ nhỏ. Những thiên thạch này đi vào khí quyển sẽ chịu ma sát và sức cản rất lớn của không khí, khiến nó nổ tung thành nhiều mảnh và tiêu biến (chính là sao băng mà chúng ta hay thấy). Ngoài ra nó cũng là lá chắn quang học giúp chúng ta thoát khỏi những tia bức xạ mạnh từ mặt trời và vũ trụ (tác nhân gây ung thư).

+ Từ trường Trái Đất: Từ trường Trái Đất do những cuộn xoáy của sắt lỏng bên trong nhân Trái Đất gây ra. Nếu như khí quyển là là chắn cơ học thì từ trường chính là lá chắn điện từ. Vào những ngày mặt trời hoạt động mạnh, nó sẽ có những điểm bùng nổ và phun về phía Trái Đất một lượng vật chất ở dạng ion (gọi là bão Mặt Trời). Từ trường Trái Đất sẽ đánh bật các ion này ra 2 cực (hiệu ứng lực Lorenxo).
Ở vùng cực, các ion này đi vào khí quyển phát sáng sinh ra cực quang Bắc cực.​

Chương III: Trái Đất luôn vận động.

- Bên trong Trái Đất có một nguồn nhiệt khổng lồ, được duy trì bằng sự phân rã các chất phóng xạ. Chính nguồn năng lượng này đã gây ra những hoạt động địa chất như núi lửa, động đất, kiến tạo địa hình, sự trôi dạt lục địa.....

Để tìm hiểu cơ chế của những hình thái vận động này, trước hết chúng ta cần tìm hiểu cấu tạo Trái Đất.

- Cấu tạo Trái Đất.

Có thể chia Trái Đất thành 3 lớp chính:

+ Lớp vỏ ngoài được cấu tạo từ đá rắn.
+ Lớp manti ở dạng dung nham lỏng.
+ Nhân Trái Đất là lõi sắt cứng.

Lớp vỏ ngoài không phải là 1 mảng liên tục mà đứt gãy thành nhiều mảng nhỏ, người ta gọi đó là các mảng kiến tạo. Các mảng kiến tạo này trôi nổi trên bề mặt lớp manti.

Lớp manti cũng không phải là một khối dung nham tĩnh lặng. Nó luôn có những dòng đối lưu từ nhân lên đáy vỏ Trái Đất.

- Núi lửa.

Núi lửa hình thành do magma từ lớp manti phun trào thông qua những khe hở hoặc những chỗ yếu giữa các mảng lục địa.

Trên thế giới nổi tiếng nhất là "vành đai lửa Thái Bình Dương".

Núi lửa cung cấp một lượng chất hữu cơ - vô cơ lớn cho sự sống phát triển. Nó cũng từng cứu Trái Đất thoát khỏi thời kỳ băng hà. Tuy nhiên núi lửa hoạt động quá mạnh cũng có thể hủy diệt sự sống bằng việc phun quá nhiều khí - bụi vào khí quyển khiến che lấp ánh sáng Mặt Trời, đưa Trái Đất trở về với kỷ băng hà.

- Động đất

Lớp manti không phải là 1 khối magma tĩnh. Càng gần tâm Trái Đất, nhiệt độ càng cao. Càng gần bề mặt lục đại, nhiệt độ càng thấp. Vì vậy, bên trong lớp manti này luôn có các dòng đối lưu. Phần magma gần tâm Trái Đất nóng hơn sẽ trồi ra ngoài, còn phần sát bề mặt lục địa bị lạnh đi sẽ chìm vào tâm.

Chính các dòng đối lưu này đã đẩy các mảng kiến tạo nổi trên chúng di chuyển - hoặc tiến sát vào nhau hoặc tách nhau ra.

Khi hai mảng kiến tạo tiến vào nhau, mảng đại dương chìm xuống (do đá dưới đại dương chịu sức ép lớn sẽ có mật độ cao hơn). Ma sát nghỉ giữa các lớp đá sẽ ngăn chúng trượt lên nhau, điều này khiến các lớp đất đá tại chỗ tiếp xúc bị nén lại (biến dạng đàn hồi). Chúng tích trữ thế năng đàn hồi lớn dần theo thời gian. Khi lực đàn hồi đã thắng ma sát, các lớp đá trượt lên nhau 1 cách đột ngột, giải phóng năng lượng sinh ra động đất, kèm sau đó sẽ là sóng thần.

- Sự kiến tạo núi:

Khi hai mảng lục địa - lục địa xô vào nhau, do sự đồng đều về mặt độ đá nên không có hiện tượng mảng này chìm xuống dưới mảng kia, mà chúng sẽ cùng trồi lên sinh ra các dãy núi hùng vĩ.

Sự vận động bên trong Trái Đất là 1 phần tất yếu của tự nhiên, nó khiến cho sự sống trên hành tinh phải học cách thích nghi theo. Có những lúc nó đưa sự sống đến gần bờ tiệt diệt, cũng có lúc nó cứu sự sống khỏi sự diệt vong.

Chương IV: Những giai đoạn thăng trầm của sự sống.

Do sự vận động không ngừng của Trái Đất: sự phun trào núi lửa, sự hợp - tan của các lục địa....và cả những sự công kích của các thiên thạch mà sự sống trên Trái Đất trải qua những giai đoạn thăng - trầm khác nhau. Sự sống rất dễ bị "tổn thương", chỉ cần sự thay đổi nhẹ về địa chất - khí hậu sẽ ảnh hưởng nghiêm trọng đến hệ sinh vật trên hành tinh. Có những thời kì "đại tuyệt chủng" trong quá khứ, sự sống đứng bên bờ diệt vong, cũng có những thời kì thuận lợi, các sinh vật phát triển với kích thước lớn chưa từng thấy.

Sở dĩ sự sống có thể tồn tại mạnh mẽ như vậy là nhờ tạo hóa đã ban cho chúng ta 2 cơ chế để thích nghi với các điều kiện biến đổi của môi trường, đó là "đột biến" và "thường biến". Thường biến là những biến đổi của cơ thể trong môi trường sống, không có tính di truyền, còn đột biến là những biến đổi trong hệ gen, có di truyền.

Đột biến không phải là cái tự nhiên mà có. Hàng ngày và hàng đêm, Trái Đất luôn đón nhận những tia bức xạ năng lượng cao từ vũ trụ.

Chúng là loại tia không nhìn thấy được, sinh ra từ những vụ nổ siêu tân tinh cách đây hàng triệu năm. Sau những năm dài chu du trong khoảng không vũ trụ, chúng đến Trái Đất, tác động vào ADN của sinh vật sống gây ra những biến đổi ---> đột biến. Những đột biến phù hợp với điều kiện môi trường sẽ tồn tại và phát triển rộng rãi, những đột biến không phù hợp sẽ giết chết sinh vật (ung thư cũng là 1 dạng đột biến).

Chính nhờ cơ chế đột biến ấy mà từ những tế bào đơn giản của mầm sống ban đầu, chúng ta đã có cả một hệ sinh vật phong phú như ngày nay.

Lịch sử của sự sống mỗi giai đoạn được ghi lại bằng cách hóa thạch và các lớp đá. Mình sẽ nêu tóm tắt 1 số giai đoạn ấn tượng nhất.

- Thời kỳ tiền Cambri: Là thời Trái Đất mới hình thành, nguội lạnh đi và các sinh vật sống bắt đầu xuất hiện. Cuối thời kỳ này, có lẽ vì lượng oxi trong không khí quá nhiều khiến nhiệt độ không khí giảm, băng lan dần xuống vùng xích đạo hình thành hiện tượng "quả cầu tuyết" hủy diệt phần lớn sự sống.

- Đại Hiến Sinh: Hoạt động của núi lửa đã thổi cacbon vào không khí phá vỡ hiệu ứng "quả cầu tuyết".

Trong đại này, có những giai đoạn núi lửa hoạt động mạnh làm khí hậu toàn cầu nóng lên, lượng oxi hòa tan trong biển giảm khiến 60% sinh vật biển bị tuyệt chủng. Cũng có những giai đoạn CO2 trong không khí bị đá vôi hấp thụ, lượng CO2 giảm khiến khí hậu toàn cầu lại lạnh đi. Trong Đại Trin Sinh, một vài kỷ có ảnh hưởng lớn đến ngày nay:

+ Kỷ phấn trắng: Thời kỳ này biển ấm và nông, tạo điều kiện cho các sinh vật tích tụ canxi như san hô, sò, ốc....phát triển mạnh. Xác các sinh vật này rất giàu Canxi. Qua nhiều triệu năm, xác của chúng tích tụ thành 1 tầng canxi dày dưới đáy biển, dưới áp lực nước, chúng bị nén lại thành đá. Các hoạt động địa chất nâng các lớp đá này lên và sự bào mòn của mưa axit tạo thành núi. Các đảo đá vôi ở Vịnh Hạ Long và núi đá vôi vùng Tây Bắc là kết quả của quá trình này.

+ Kỷ Cacbon: Thời kì này khí hậu nóng ẩm, diện tích đất liền rộng lớn cho phép những khu rừng nguyên sinh và đầm lầy phát triển mạnh. Thực vật ở thời kỳ này chủ yếu là dương xỷ khổng lồ. Hoạt động nâng lên - chìm xuống của các mảng địa chất đã vùi sâu 1 số khu rừng vào lòng đất. Tại đây, nhiệt độ, áp suất cao và trong điều kiện kín khí, gỗ dần chuyển thành than đá.

Dầu mỏ được hình thành sớm hơn kỷ Cacbon cũng bằng cơ chế tương tự. Xác của các loài động vật bị vùi sâu trong lòng đất và ở nhiệt độ cao, kín khí, các chất hữu cơ bị hóa dầu.​

- Đại Trung Sinh: Các lục địa từ "siêu lục địa" tách ra và có hình dạng gần giống như ngày nay. Trong đại này có thời kỳ của loài khủng long (kỷ Jura).

+ Kỷ Jura: Không chỉ là thời kỳ hoàng kim của khủng long, ở kỷ này, khí hậu nóng ẩm tạo điều kiện cho các loài thực vật và động vật phát triển, đạt kích thước khổng lồ. Loài khủng long đã thống trị Trái Đất trong gần 150 triệu năm (Lịch sử loài người chỉ mới khoảng 200.000 năm). Trong 150 triệu năm ấy, sức mạnh, kích thước, vũ khí tự nhiên (răng, vuốt) được tôn vinh, không có khái niệm về tri thức. Có lẽ vì loài khủng long "lười học hành" mà vũ trụ đã gửi đến cho chúng một sứ giả hủy diệt. Một thiên thạch va vào Trái Đất cách đây 65 triệu năm đã chấm hết thời kì thống trị của khủng long.

- Đại Tân Sinh: Sau sự tuyệt chủng của khủng long, các loài có vú (vốn có mặt từ trước nhưng phải sống lay lắt trong các hang hốc, trốn tránh loài thằn lằn ăn thịt hung dữ) nay đã có cơ hội phát triển. Cuối đại Tân Sinh, sau khi trải qua một kỷ băng hà cách đây 10.000 năm, loài người đã chính thức chiếm lĩnh Trái Đất, đứng đầu trong hệ sinh vật.

Có thể thấy sự sống trên hành tinh phụ thuộc rất lớn vào sự vận động bên trong Trái Đất. Mỗi thời kỳ địa chất - sự phân bố các lục địa - đều có ảnh hưởng to lớn đến hệ sinh vật. Bản thân sinh vật cũng biết tự cải tạo môi trường sống cho mình. Thời mới hình thành, các loài tảo cổ đại đã góp phần tạo một bầu khí quyển giàu oxi tạo mái nhà chung cho các sinh vật khác. Bên cạnh các loài tự dưỡng (thực vật), các loài dị dưỡng (vi khuẩn, động vật, nấm) ra đời nhằm đảm bảo cân bằng lượng O2 và CO2 trong khí quyển, làm khí hậu Trái Đất ổn định. Loài người chúng ta xuất hiện có lẽ mang trên mình trách nhiệm bảo vệ sự sống trên Trái Đất khỏi những mối de dọa từ bên ngoài - điều mà loài khủng long đã không thể làm được.

hương V: Tổng kết.

- Vũ trụ được sinh ra từ một vụ nổ tràn ngập ánh sáng. Trong 1 góc nhỏ nào đó của vũ trụ, hệ Mặt Trời âm thầm hình thành. Vật chất được sinh ra bởi BigBang đang dần có ý thức và đang tìm hiểu về chính mình. Sự sống thực sự là 1 phép màu!

- Vũ trụ là 1 khối rất hỗn độn và ngẫu nhiên. Nó là những vụ nổ lớn, những lò phản ứng nhiệt hạch, những chùm tia bức xạ, những vụ qua chạm của thiên thạch, sao băng, sao chổi....Sự sống đã biết cách tận dụng tối đa những cái ngẫu nhiên mà khốc liệt ấy để tồn tại và phát triển:

+ Dòng năng lượng chảy trong hệ sinh vật được lấy từ năng lượng phản ứng nhiệt hạch của Mặt Trời.
+ Nước trên biển cả được lấy từ những ngôi sao chổi.
+ Dùng những tia bức xạ từ những vụ nổ dữ dội trong vũ trụ để đột biến.
+ Lấy những vụ va chạm thiên thạch làm thử thách, để không ngừng tiến hóa đến những cấp bậc cao hơn.

- 80 năm cuộc đời mỗi người, 200.000 năm lịch sử loài người là quá bé nhỏ so với thời không vũ trụ, quá bé nhỏ để nghĩ đến diệt vong. Sinh rồi diệt, các hành tinh đều không thoát khỏi quy luật ấy, sự sống cũng sẽ như vậy. Tiếng tăm, danh vọng của một con người cho dù vang dội đến đâu rồi cũng sẽ tan biến trong khoảng bao la của thời không.

- Sự tồn tại của mỗi chúng ta đều là ngẫu nhiên và hoàn toàn không có ý nghĩa. Thế giới vốn cũng chẳng có quy luật nào cả.

P/s : Nếu dài các bạn có thể đọc dần từng chương =]]

1

cho mk vô nhóm đi