Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Vẽ đồ thị hàm số \(y = x + 3\)
Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{1} = - 3\) ta được điểm \(B\left( { - 3;0} \right)\) trên \(Ox\).
Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(B\).
- Vẽ đồ thị hàm số \(y = - x + 3\)
Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{{ - 1}} = 3\) ta được điểm \(C\left( {3;0} \right)\) trên \(Ox\).
Đồ thị hàm số \(y = - x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(C\).
Từ đồ thị ta thấy giao điểm của hai đường thẳng là \(A\left( {0;3} \right)\).
Đường thẳng \({d_1}\) cắt trục \(Ox\) tại \(B\left( { - 3;0} \right)\).
Đường thẳng \({d_2}\) cắt trục \(Oy\) tại \(C\left( {3;0} \right)\).
Gọi \({\alpha _1};{\alpha _2}\) lần lượt là 2 góc tạo bởi đường thẳng \({d_1};{d_2}\) với \(Ox\).
Dùng thước đo độ ta kiểm tra được\({\alpha _1} = 45^\circ ;{\alpha _2} = 135^\circ \).
Vì \(Ox \bot Oy\) tại \(O\)nên tam giác \(AOB\) và tam giác \(AOC\) đều vuông tại \(O\).
Ta có: \(OA = 3;OB = 3;OC = 3\)
\(BC = OB + OC = 3 + 3 = 6\).
Áp dụng định lí Py – ta – go cho tam giác \(AOB\) ta có:
\(O{A^2} + O{B^2} = A{B^2}\)
\( \Leftrightarrow {3^2} + {3^2} = A{B^2}\)
\( \Leftrightarrow A{B^2} = 9 + 9 = 18\)
\( \Leftrightarrow AB = \sqrt {18} = 3\sqrt 2 \)
Áp dụng định lí Py – ta – go cho tam giác \(AOC\) ta có:
\(O{A^2} + O{C^2} = A{C^2}\)
\( \Leftrightarrow {3^2} + {3^2} = A{C^2}\)
\( \Leftrightarrow A{C^2} = 9 + 9 = 18\)
\( \Leftrightarrow AC = \sqrt {18} = 3\sqrt 2 \)
Chu vi tam giác \(ABC\) là:
\(C = AB + AC + BC = 3\sqrt 2 + 3\sqrt 2 + 6 = 6 + 6\sqrt 2 \) (đơn vị độ dài)
Vì \(Ox \bot Oy\) nên \(OA\) vuông góc với \(BC\) tại \(O\). Do đó, \(OA\) là đường cao tam giác \(ABC\) ứng với cạnh \(BC\).
Diện tích tam giác \(ABC\) là:
\(S = \dfrac{1}{2}OA.BC = \dfrac{1}{2}.3.6 = 9\) (đơn vị diện tích)
Vậy chu vi tam giác \(ABC\) là \(6 + 6\sqrt 2 \) đơn vị độ dài và diện tích tam giác \(ABC\) là 9 đơn vị diện tích.
Nhìn câu b thấy "chạy chạy" chắc hẳn là độ lầy của câu này cũng siêu cao :v, đang ngu não chờ tối tối làm thử :v
P/s : up lên CHH luôn cho các thánh theo dõi :V
mấy bạn làm nêu hộ hướng ch/minh giùm cái vs nha 8.8
cảm ưn nhièu
a) Đường thẳng \(d:y = 2x + 3\) có hệ số góc là \(a = 2\).
Đường thẳng \(d':y = 2x - 2\) có hệ số góc là \(a' = 2\).
Hệ số góc của hai đường thẳng \(d\) và \(d'\) bằng nhau.
Từ đồ thị ta thấy, hai đường thẳng \(d\) và \(d'\) song song với nhau.
b) Đường thẳng \(d''\) đi qua gốc tọa độ \(O\) nên có dạng \(y = a''x\).
Từ đồ thị ta thấy, \(d''\) đi qua điểm \(\left( {1;2} \right)\) nên ta có:
\(2 = 1.a'' \Rightarrow a'' = 2\).
Do đó, đường thẳng \(d''\) là \(y = 2x\).
BÀI 2:
Gọi số thứ nhất là x
số thứ hai là x + 4
Theo đề ra ta có:
\(\dfrac{x+2}{3.\left(x+4\right)}=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{\left(x+2\right).15}{45\left(x+4\right)}=\dfrac{12\left(x+4\right)}{45\left(x+4\right)}\)
\(\Leftrightarrow15x+30=12x+48\)
\(\Leftrightarrow3x=18\)
\(\Leftrightarrow x=6\)
Vậy số thứ nhất là 6
Số thứ hai là: 6+4 = 10
Bài 3:
Gọi số tuổi hiện nay của Mai là x ( tuổi)
Tuổi mẹ là: 10x ( tuổi)
Tuổi Mai 24 năm nữa là: x + 24 ( tuổi)
Tuổi mẹ 24 năm nữa là: 10x + 24 ( tuổi)
Theo đề ra ta có pt:
\(\left(x+24\right).2=10x+24\)
\(\Leftrightarrow2x+48=10x+24\)
\(\Leftrightarrow-8x=-24\)
\(\Leftrightarrow x=3\)
Vậy tuổi của Mai hiện nay là 3 ( tuổi)
a) Vật chịu tác dụng của 2 lực: lực hút của Trái Đất và lực nâng của mặt bàn
a) Quan sát hình 24, ta thấy:
Tung độ giao điểm của hai đường thẳng \({d_1},{d_2}\) đều bằng 2.
Nhận xét: Hai chuyển động đều có cùng tốc độ ban đầu là 2m/s.
b) Trong 2 đường thẳng \({d_1},{d_2}\) đường thẳng d2 có hệ số góc lớn hơn.
c) Từ giây thứ nhất trở đi, vật thứ hai có tốc độ lớn hơn vì đường thẳng d2 cao hơn đường thẳng d1 từ giây thứ nhất.