K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2022

30 phút = \(\dfrac{1}{2}h.\)

Gọi quãng đường AB dài là: \(x\left(km\right)\left(x>0\right).\)

Thời gian ôtô đi từ A đến B là: \(\dfrac{x}{50}\left(h\right).\)

Thời gian ôtô đi về là: \(\dfrac{x}{60}\left(h\right).\)

Vì thời gian về ít hơn thời gian đi là 30 phút, nên ta có phương trình:

\(\dfrac{x}{50}-\dfrac{1}{2}=\dfrac{x}{60}.\\ \Leftrightarrow\dfrac{6x-150-5x}{300}=0.\\ \Rightarrow x=150\left(TM\right).\)

20 tháng 3 2022

30 phút = 1/2 giờ

Gọi thời gian đi quãng đường AB  là: x(giờ)(x>0)

 Quãng đường ôtô đi từ A đến B là: 50*x (km)

Thời gian ôtô đi về là:  60*(x-1/2) (km)

Vì thời gian về ít hơn thời gian đi là 30 phút, nên ta có phương trình:

50*x= 60*(x-1/2)

<=> 50x = 60x+30

<=> -10x = -30

<=> x= 3

 Quãng đường ôtô đi từ A đến B là:

3*50=150(km)

\(\dfrac{A}{B}=\dfrac{3x^4+3x^2+x^3+x-3x^2-3+5x-2}{x^2+1}=3x^2+x-3+\dfrac{5x-2}{x^2+1}\)

Để A chia hết cho B thì \(\left(5x-2\right)\left(5x+2\right)⋮x^2+1\)

\(\Leftrightarrow25x^2-4⋮x^2+1\)

\(\Leftrightarrow25x^2+25-29⋮x^2+1\)

\(\Leftrightarrow x^2+1\in\left\{1;29\right\}\)

hay \(x\in\left\{0;2\sqrt{7};-2\sqrt{7}\right\}\)

Bài 1: Rút gọn biểu thức a. (5+3x)(x-2)-3(x+3)\(^2\) b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4) Bài 2: Phân tích đa thức thành nhân tử a. (x+y)\(^2\)+(x\(^2\)-y\(^2\)) b. -4x\(^2\)+25+4xy-y\(^2\) c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\) d. x\(^2\)-x-12 e. 2x\(^2\)+x-6 f. 3x\(^2\)+2x-5 g. x\(^3\)+2x\(^2\)-3 Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N a) A= x\(^2\)+4x+9 b) B= 2x\(^2\)-20x+53 c) M= 1+6x-x\(^2\) d) N=...
Đọc tiếp

Bài 1: Rút gọn biểu thức

a. (5+3x)(x-2)-3(x+3)\(^2\)

b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4)

Bài 2: Phân tích đa thức thành nhân tử

a. (x+y)\(^2\)+(x\(^2\)-y\(^2\))

b. -4x\(^2\)+25+4xy-y\(^2\)

c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\)

d. x\(^2\)-x-12

e. 2x\(^2\)+x-6

f. 3x\(^2\)+2x-5

g. x\(^3\)+2x\(^2\)-3

Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N

a) A= x\(^2\)+4x+9

b) B= 2x\(^2\)-20x+53

c) M= 1+6x-x\(^2\)

d) N= -x\(^2\)-y\(^2\)+xy+2x+2y

Bài 4: Tìm số

a) Tìm a để x\(^4\)-x\(^3\)+6x\(^2\)-x+a chia hết cho x\(^2\)-x+5

b) Tìm giái trị nguyên của n để 3n\(^3\)+10n\(^2\)-5 chia hết cho 3n+1

Bài 8: Tính giá trị của biểu thức

a) A= x\(^3\)-y\(^3\)-3xy với x-y=1

b) B= x\(^4\)+y\(^4\) với x,y là các số dương thỏa xy= 5, x\(^2\)+y\(^2\)=18

c) C= x\(^3\)-3xy(x-y)-y\(^3\)-x\(^2\)+2xy-y\(^2\) với x-y=7

d) D=x\(^{2013}\)-12x\(^{2012}\)+12x\(^{2011}\)-...+12x\(^3\)-12x\(^2\)+12x-2013 với x

Ai biết bài nào thì giải hộ em với ạ TvT

2
21 tháng 10 2019

Bài 3:

a) ta có: \(A=x^2+4x+9\)

\(=x^2+4x+4+5=\left(x+2\right)^2+5\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2

b) Ta có: \(B=2x^2-20x+53\)

\(=2\left(x^2-10x+\frac{53}{2}\right)\)

\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)

\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)

\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)

\(=2\left(x-5\right)^2+3\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)

Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5

c) Ta có : \(M=1+6x-x^2\)

\(=-x^2+6x+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

\(=-\left(x-3\right)^2+10\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3

21 tháng 10 2019

Bài 2:

a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)

\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)

\(=\left(x+y\right).\left(x+y+x-y\right)\)

\(=\left(x+y\right).2x\)

c) \(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)

\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)

Chúc bạn học tốt!

7 tháng 9 2018

B1:a)(3x-5)2-(3x+1)2=8

[(3x-5)+(3x+1)].[(3x-5)-(3x+1)]=8

(3x-5+3x+1)(3x-5-3x-1)=8

9x2-15x-9x2-3x-15x+25+15x+5+9x2-15x-9x2-3x+3x-5-3x-1=8

-36x+24=8

-36x=8-24=16

x=16:(-36)=\(\dfrac{-4}{9}\)

Bài 5: 

a: \(=\left(xy-u^2v^3\right)\left(xy+u^2v^3\right)\)

b: \(=\left(2xy^2-3xy^2+1\right)\left(2xy^2+3xy^2-1\right)\)

\(=\left(1-xy^2\right)\left(5xy^2-1\right)\)

Bài 6:

a: \(\left(a+b+c-d\right)\left(a+b-c+d\right)\)

\(=\left(a+b\right)^2+\left(c-d\right)^2\)

\(=a^2+2ab+b^2+c^2-2cd+d^2\)

b: \(\left(a+b-c-d\right)\left(a-b+c-d\right)\)

\(=\left(a-d\right)^2-\left(b-c\right)^2\)

\(=a^2-2ad+d^2-b^2+2bc-c^2\)