Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)đổi 20h=1/3 h
tg đi là x/25
tg lúc về là x/30
theo bài ra ta có pt
x/25-x/30=1/3
<=>x.30/750-x.25/750=1.250/750
<=>30x-25x=250
<=>5x=250
<=>x=250:5
<=>x=50
vậy quãng đường AB là 50 km
b: Gọi độ dài AB là x
Thời gian đi là x/15
Thời gian về là x/12
Theo đề, ta có: x/15+x/12=4,5
=>x=30
$20'=\dfrac{1}{3}h$
Gọi $x(km)$ là độ dài quãng đường AB $(x>0)$
Thời gian đi từ A đến B là: $\dfrac{x}{40}(h)$
Vận tốc đi từ B về A là: $40+15=55(km/h)$
Thời gian đi từ B về A là: $\dfrac{x}{55}(h)$
Theo đề bài, ta có phương trình:
$\dfrac{x}{40}-\dfrac{x}{55}=\dfrac{1}{3}$
$⇔(\dfrac{1}{40}-\dfrac{1}{55}).x=\dfrac{1}{3}$
$⇔x=\dfrac{1}{3}:(\dfrac{1}{40}-\dfrac{1}{55})=\dfrac{440}{9}≃49 \ \ \text{(nhận)}$
Đổi 45p=3/4h
Gọi quãng đường AB dài x (km) (x>0)
Thời gian người này đi từ A đến B là : x/ 30 (h)
Thời gian người này đi từ B về A là : x/40 (h)
Vì thời gian về ít hơn thời gian đi 45p nên ta có PT sau: x/30 -x/40 = 3/4 => x= 90 km
Vậy quãng đường AB dài 90 km.
Đổi: 45p = 3/4 h
Gọi s là quãng đường AB ( s > 0, km)
Ta có pt: \(\frac{s}{30}=\frac{s}{40}+\frac{3}{4}\)
\(\Leftrightarrow\frac{s}{30}=\frac{s+30}{40}\)\(\Leftrightarrow\frac{4s}{120}=\frac{3\left(s+30\right)}{120}\)
\(\Rightarrow4s=3s+90\)
\(\Leftrightarrow s=90\)
Vậy quãng đường AB là 90 km
Gọi độ dài quãng đường AB là x(km), (x>0)
khi đó: thời gian khi đi từ A đến B là\(\)x/4(h)
thời gian đi từ B về A là x/5 (h)
do thời gian lúc về ít hơn thời gian đi là 30' tức 1/2 h nên ta có phương trình x/5 -x/4 =1/2
Đổi 30 phút = 1/2giờ
Gọi vận tốc của xe đạp khi đi từ A đến B là x (km/h, x>0 ). Thời gian xe đi từ A đến B là 24/x (giờ).
Đi từ B về A, người đó đi với vận tốc x + 4 (km/h). Thời gian xe đi từ B về A là 24/x+4 (giờ) Do thời gian về ít hơn thời gian đi là 30 phút nên ta có phương trình:
\(\frac{24}{x}-\frac{24}{x+4}=\frac{1}{2}\). Giải phương trình:
\(\frac{24}{x}-\frac{24}{x+4}=\frac{1}{2}\Leftrightarrow x^2+4x-192=0\Leftrightarrow\orbr{\begin{cases}x=12\\x=-16\end{cases}}\)
Đối chiếu với điều kiện ta có vận tốc của xe đạp đi từ A đến B là 12km/h.
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{x}{40}-\dfrac{x}{50}=\dfrac{1}{2}\Rightarrow x=100\left(tm\right)\)
Gọi quãng đường AB là x.ĐK: x>0
khi đó thời gian mà người đi xe đạp với vận tốc 12 (km/h) là x/12 (h)
thời gian mà người đó khi về với vận tốc 15 km/h là (x+2,5)/15
đổi 20'=1/3 h
theo bài ra ta có phương trình:
x/12 + (x+2.5)/15=1/3
=>5x+4(x+2,5)=20
<=> 5x+4x+10=20
<=>x=10/9(TM)
Vậy quãng đường AB là 10/9 km
Đổi 30 phút = \(\dfrac{1}{2}\) (giờ)
Gọi x (km) là quãng đường từ A đến B (ĐK : x > 0)
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 30 phút nên ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{60}{120}\)
\(\Leftrightarrow7x=60\)
\(\Leftrightarrow x=\dfrac{60}{7}\) (N)
Vậy : quãng đường AB dài \(\dfrac{60}{7}\left(km\right)\)
Vận tốc đi của người đó là 8 km/h