Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt ẩn x là vận tốc xe máy (x>0)
Lúc đầu đi vs x km/h thì lúc sau là x+9 km/h
Thời gian đi từ A -> B là 90/x thì thời gian từ B -> A là 90/x+9
Đến B còn nghỉ 30p=1/2h
Lập hệ phương trình thời gian:
(90/x)+1/2+(90/x+9)=5
<=> (90/x)+(90/x+9)=5-1/2
<=> (90.(x+9)+90.x)/x.(x+9)=9/2
<=> 90.x+810+90.x=(9/2).x.(x+9)
<=>180.x+810=(9/2)x^2+(81/2).x
<=> 0 = (9/2).x^2 - (279/2).x - 810
Gpt đc x=36 hoặc x=-5( loại vì ko thỏa mãn điều kiện)
Gọi vận tốc xe máy lúc đi từ A đến B là x
Gọi vận tốc xe máy lúc đi từ B đến A là y
(km/h; x > 0; y > 9)
Do vận tốc lúc về lớn hơn vận tốc lúc đi là 9 km/h => Ta có phương trình:
y - x = 9 (1)
Thời gian người đó đi từ A đến B là \(\dfrac{90}{x}\) (giờ)
Thời gian người đó đi từ B đến A là \(\dfrac{90}{y}\) (giờ)
Do thời gian người đó đi là 5 giờ => Ta có phương trình:
\(\dfrac{90}{x}+\dfrac{90}{y}+\dfrac{1}{2}=5\left(2\right)\)
(1)(2) <=> \(\left\{{}\begin{matrix}y-x=9< =>x=y-9\\\dfrac{90}{x}+\dfrac{90}{y}-\dfrac{9}{2}=0\left(3\right)\end{matrix}\right.\)
(3) <=> \(\dfrac{10}{x}+\dfrac{10}{y}-\dfrac{1}{2}=0\)
<=> \(\dfrac{20x+20y-xy}{2xy}=0\)
<=> \(20x+20y-xy=0\)
<=> 20(y-9) + 20y - (y-9)y = 0
<=> 20y - 180 + 20y - y2 +9y = 0
<=> y2 - 49y + 180 = 0
<=> (y-45)(y-4) = 0
<=> \(\left[{}\begin{matrix}y=45\left(c\right)\\y=4\left(l\right)\end{matrix}\right.\)
Thay y = 45 vào phương trình (1), ta có:
x = 45 - 9 = 36 (tm)
=> Vận tốc xe máy lúc đi từ A đến B là 36 km/h
Gọi vận tốc xe máy lúc đi từ A đến B là x (km/h; x > 0)
Vận tốc xe máy lúc đi từ B đến A là x + 9 (km/h)
Thời gian người đó đi từ A đến B là \(\dfrac{90}{x}\) (giờ)
Thời gian người đó đi từ B đến A là \(\dfrac{90}{x+9}\) (giờ)
Đổi 30 phút = \(\dfrac{1}{2}\) giờ
Do thời gian người đó đi là 5 giờ => Ta có phương trình
\(\dfrac{90}{x}+\dfrac{90}{x+9}+\dfrac{1}{2}=5\)
<=> \(\dfrac{90}{x}+\dfrac{90}{x+9}-\dfrac{9}{2}=0\)
<=> \(\dfrac{180\left(x+9\right)+180x-9x\left(x+9\right)}{2x\left(x+9\right)}=0\)
<=> \(180x+1620+180x-9x^2-81x=0\)
<=> \(9x^2-279x-1620=0\)
<=> \(x^2-31x-180=0\)
<=> (x-36)(x+5) = 0
<=> \(\left[{}\begin{matrix}x=36\left(c\right)\\x=-5\left(l\right)\end{matrix}\right.\)
KL: Vận tốc xe máy lúc đi từ A đến B là 36km/h
Đổi: \(4h45'=4,75h\)
Gọi độ dài đoạn đường \(AB:x\left(km\right)\left(x>0\right)\)
Độ dài đoạn đường \(BC:x-15\left(km\right)\)
Ta có: \(\frac{x}{40}+\frac{x-15}{30}=4,75\)
\(\Rightarrow\frac{30x+40\left(x-15\right)}{1200}=4,75\)
\(\Rightarrow70x-600=5700\)
\(\Rightarrow x=90km\)
\(\Rightarrow BC=90-15=75km\)
Vậy ...........
gọi x là thời gian ban đầu đi từ a đến b, ta có phương trình:
60/x-60/(x-1/6)=5
60(x-1/6)/(x(x-1/6))-60x/(x(x-1/6))=(5x(x-1/6))/(x(x-1/6))
<=> 60 (x-1/6)-60x=5x(x-1/6)
<=> 60x-10-60x=5x^2-(5/6)x
<=> -10-5x^2-(5/6)x=0
=> x=4/3h
van toc ban dau di tu a den b la: 60/(4/3)=45km/h
Gọi thời gian đi từ A đến B là x(giờ)
(ĐK: x>0)
Thời gian đi từ B đến C là x+0,5(giờ)
Độ dài quãng đường từ A đến B là 10x(km)
Độ dài quãng đường từ B đến C là 9(x+0,5)(km)
Độ dài AC là 33km nên ta có:
10x+9(x+0,5)=33
=>19x+4,5=33
=>19x=33-4,5=30-1,5=28,5
=>x=1,5(nhận)
vậy: Thời gian đi từ A đến B là 1,5 giờ
Thời gian đi từ B đến C là 1,5+0,5=2 giờ