Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc xe đi từ A và xe đi từ B lần lượt là x và y (km/h)
Gọi độ dài đoạn AB là S (km) (S khác 0)
Mỗi lần gặp nhau, do thời điểm hai xe xuất phát là cùng lúc nên ta có thể lập tỷ số vận tốc theo đại lượng quãng đường khi thời gian đã được triệt tiêu.
Lần 1 gặp nhau, ta có tỷ số: \(\dfrac{x}{y}\) = \(\dfrac{S-20}{20}\) (1)
Lần 2 gặp nhau, ta có tỷ số: \(\dfrac{x}{y}\) = \(\dfrac{20+S-12}{12+S-20}\)= \(\dfrac{8+S}{S-8}\) (2)
Từ (1) và (2): (S - 20).(S - 8) = 20. (8 + S)
Suy ra: S2 - 38S = 0
Suy ra S = 38 (km)
Thay vào (1) suy ra tỷ số \(\dfrac{x}{y}\) = \(\dfrac{9}{10}\)
Bài này nếu vẽ hình ra và suy luận một chút sẽ dễ hiểu được vì sao quãng đường mà mỗi xe đi được lại được biểu diễn theo S như trong (1) và (2) em nhé!
ta có:
S1+S2=180
\(\Leftrightarrow v_1t_1+v_2t_2=180\)
\(\Leftrightarrow30t_1+15t_2=180\)
mà t1=t2=t
\(\Rightarrow45t=180\)
\(\Rightarrow t=4h\)
\(\Rightarrow S_1=120km\)
sau bao lâu 2 người gặp nhau là
SAB=S1+S2=V1.t1+V2.t2
Do t1=t2=t
\(\rightarrow\)SAB=(V1+V2).t
\(\rightarrow t=\dfrac{S_{AB}}{V_1+V_2}=\dfrac{180}{30+15}=4\left(h\right)\)
chỗ gặp nhau đó cách A là
S1=V1.t=30.4=120(km)
chỗ gặp nhau đó cách B là
S2=V2.t=15.4=60(km)
Bài 1:
a)Thời gian xe thứ nhất chạy xong quãng đường là:\(t=\frac{s}{v_1}=\frac{60}{30}=2\left(h\right)\)
Giả sử sau 1 giờ, xe thứ hai chạy đến M
Thời gian xe thứ hai chạy từ M đến hết quãng đường kể cả nghỉ là:
t* = 2 + 0,5 = 2,5 (h)
Thời gian thực để xe hai đi hết quãng đường là:
t** = t* + 1 − 0,75 = 2,5 + 1 − 0,75 = 2,75 (h)
Vận tốc xe hai là:
v = s/t** = 60/2,75 = 21, (81) (km/h)
b)Để xe 2 đến nơi cùng lúc với xe 1 thì t* = 2
=> t** = t* + 1 - 0,75 = 2 + 1 - 0,75 = 2,25
=> v = s/t** = 60/2,25 = 26, (6) (km/h)
a)
Sau 2h thì người đi xe đạp đi được:
S1 = 12 . 2 = 24(km)
Vậy ta có thể coi 2 người bắt đầu đi từ lúc 8h, và khoảng cách giữa 2 người là
S = AB − S1 = 48 - 24 = 24 (km)
=> Kể từ lúc 8h thì thời gian để 2 người gặp nhau là:
\(t=\frac{S_1}{12+4}=1,5\left(h\right)\)
Vậy 2 người gặp nhau lúc 9h30' và cách A:
S=S1+12. 1,5 = 42 (km)
b)
Ta có: Thời gian người đi xe đạp đi trước người đi bộ là 2h nhưng người đi xe đạp lại nghỉ 1h nên ta coi người đi xe đạp đi trước người đi bộ 1h.
Sau 1h thì người đi xe đạp đi được:
S1 = 12 . 1 =12(km)
Vậy ta có thể coi 2 người bắt đầu đi từ lúc 8h, và khoảng cách giữa 2 người là
S = AB − S1 = 36km
=> Kể từ lúc 8h thì thời gian để 2 người gặp nhau là:
\(t=\frac{S_1}{12+4}=2,25\left(h\right)\)
Vậy 2 người gặp nhau lúc 10h15' và cách A:
S = S1 + 12 . 2,25 = 39km
a)ta có:
xe 1 đi hết AB trong 3h và xe 2 đi hết AB trong 2h (nên v2>v1) nên từ đó ta có tỉ lệ:
3v1=2v2\(\Rightarrow v_2=1,5v_1\)
do sau nửa giờ hai xe cách nhau 10km nên:
\(0,5\left(v_2-v_1\right)=10\)
\(\Leftrightarrow0,5\left(1,5v_1-v_1\right)=10\Rightarrow v_1=40\)
từ đó ta suy ra:
v2=60km/h
AB=120km
b)nếu xe 1 đi trước xe 2 30 phút thì:
lúc xe hai đi thì xe 1 đã đi được:
ΔS=v1.0,5=20km
lúc xe 1 gặp xe hai thì:
S2-S1=ΔS
\(\Leftrightarrow v_2t_2-v_1t_1=20\)
\(\Leftrightarrow60t_2-40t_1=20\)
mà t1=t2
\(\Rightarrow20t_2=20\Rightarrow t_2=1h\)
\(\Rightarrow S_2=60km\)
vậy sau 1h thì xe 2 gặp xe 1 và vị trí gặp nhau cách A 60km
c)do v2>v1 nên xe 2 đến B trước trong 2h(câu a)) nên:
lúc đó xe 1 đi được:
2.40=80km
xe 1 còn cách B là:
120-80=40km
nếu tính theo câu b) thì:
xe 1 lúc đó đi được là:
40.(2+0,5)=100km
xe 1 còn cách B là:
120-100=20km