K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 3 2022

Chiều dài là: 

\(50\times\frac{6}{5}=60\left(m\right)\)

CHu vi khu vườn đó là: 

\(\left(60+50\right)\times2=220\left(m\right)\)

Diện tích khu vườn đó là: 

\(60\times50=3000\left(m^2\right)\)

Diện tích trồng hoa là: 

\(3000\times\frac{1}{6}=500\left(m^2\right)\)

30 tháng 1 2021

Câu 1:

Gọi chiều rộng khu vườn là \(x\) (m) \(\left(x>0\right)\)

\(\Rightarrow\) Chiều dài khu vườn là \(\dfrac{7}{4}x\) (m).

Diện tích khu vườn là 1792 m2 \(\Rightarrow\dfrac{7}{4}x^2=1792\)

\(\Rightarrow x^2=1024\Rightarrow x=32\) (m)

\(\Rightarrow\) Chiều rộng khu vườn là \(32\)m, chiều dài khu vườn là \(\dfrac{7}{4}.32=56\)m

\(\Rightarrow\) Chu vi khu vườn là: \(2.\left(32+56\right)=176\) (m).

(Bạn có thể gọi chiều dài là x, chiều rộng là y nhé.)

Câu 2:

Bạn kiểm tra lại đề bài nhé. Thiếu dữ kiện để có thể lập được hệ phương trình ạ.

Câu 2: 

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh vườn(Điều kiện: a>0; b>0 và \(a\ge b\))

Vì diện tích ban đầu của mảnh vườn là 720m2 nên ta có phương trình: 

ab=720(1)

Vì khi tăng chiều dài 6m và giảm chiều rộng 4m thì diện tích mảnh vườn không đổi nên ta có phương trình:

\(\left(a+6\right)\left(b-4\right)=720\)

\(\Leftrightarrow ab-4a+6b-24=720\)

\(\Leftrightarrow-4a+6b-24=0\)

\(\Leftrightarrow-4a+6b=24\)(2)

Từ (1) và (2) ta có được hệ phương trình:

\(\left\{{}\begin{matrix}ab=720\\-4a+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-4\cdot\dfrac{720}{b}+6b=24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-\dfrac{2880}{b}+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6b^2-24b-2880=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6\left(b^2-4b-480\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\b^2-4b+4-484=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2\right)^2-484=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2-22\right)\left(b-2+22\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-24\right)\left(b+20\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b-24=0\\b+20=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b=24\left(nhận\right)\\b=-20\left(loại\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{24}=30\left(nhận\right)\\b=24\end{matrix}\right.\)

Vậy: Chiều dài của mảnh vườn là 30m; Chiều rộng của mảnh vườn là 24m

NV
21 tháng 3 2021

Gọi chiều rộng của khu vườn là x>1 (m)

Chiều dài khu vườn: \(x+5\) (m)

Diện tích ban đầu: \(x\left(x+5\right)\)

Diện tích sau khi làm lối đi: \(\left(x-1\right)\left(x+4\right)\)

Theo bài ra ta có pt:

\(x\left(x+5\right)-\left(x-1\right)\left(x+4\right)=66\)

\(\Leftrightarrow2x=62\Rightarrow x=31\)

Vậy khu vườn ban đầu dài 36m, rộng 31m

10 tháng 1 2021

ai giải gúp mình được ko ạ

4 tháng 9 2016

Gọi chiều dài chiều rộng ban đầu là a,b 

Sau khi làm lối đi thì chiều dài chiều rộng là (a -4), (b - 4)

Theo đề bài ta có

\(\hept{\begin{cases}2\left(a+b\right)=280\\\left(a-4\right)\left(b-4\right)=\:4256\end{cases}}\)

=> a = 80; b = 60