Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài của mảnh vườn là x (m) ( x > 0 | x ∈ N )
Thì chiều rộng của mảnh vườn là x - 10 (m)
Vì mảnh vườn có diện tích 1200m²
Ta có phương trình:
x(x-10)=1200
⇔ x² - 10x - 1200 = 0
⇔ x² + 30x - 40x - 1200 = 0
⇔ ( x - 40 )( x + 30 ) = 0
⇔[x−40=0x+30=0[x−40=0x+30=0
⇔[x=40(TMĐK)x=−30(KTMĐK)[x=40(TMĐK)x=−30(KTMĐK)
Vậy chiều dài của mảnh vườn là 40m
⇒ Chiều rộng của mảnh vườn là: 40 - 10 = 30 (m)
Gọi chiều rộng là x
Chiều dài là x+10
Theo đề, ta có: x(x+10)=1200
\(\Leftrightarrow x^2+10x-1200=0\)
\(\text{Δ}=10^2-4\cdot1\cdot\left(-1200\right)=4900>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-10-70}{2}=-40\left(loại\right)\\x_2=\dfrac{-10+70}{2}=30\left(nhận\right)\end{matrix}\right.\)
Vậy: Chiều rộng là 30m; Chiều dài là 40m
Gọi kích thước của hình chữ nhật là x và y (x; y > 0)
Vì chu vi của hình chữ nhật bằng 140m, nên: \(\left(x+y\right)2=140\Leftrightarrow x+y=70\)
Vì làm lối đi dọc theo chu vi và có bề rộng 1m, nên kích thước của hình chữ nhật còn lại là: ( x - 2 ) và ( y - 2 )
Theo đề diện tích của hình chữ nhật còn lại bằng 1064m2, nên ta được:
\(\left(x-2\right)\left(y-2\right)=1064\Leftrightarrow xy-2x-2y=1064\Leftrightarrow xy-2\left(x+y\right)+4=1064\)
\(\Leftrightarrow xy-2.70+4=1064\Leftrightarrow xy=1064+140-4=1200\)
Ta được: \(x+y=70\) và \(xy=1200\), theo định lý Vi-et đảo: x; y là nghiệm của phương trình:
\(t^2-70t+1200=0\). Ta có \(\Delta=b^2-4ac=70^2-4.1.1200=100>0\)
Phương trình có hai nghiệm phân biệt:
\(t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{70+\sqrt{100}}{2}=40\); \(t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{70-\sqrt{100}}{2}=30\)
Vậy nếu x = 40 thì y = 30 và ngược lại.
=> Kích thước của mảnh vườn hình chữ nhật còn lại là 30m và 40m.
Gọi chiều rộng mảnh vườn là x, chiều dài mảnh vườn là 3x
Diện tích mảnh vườn ban đầu là: \(3x^2\left(m^2\right)\)
Diện tích mảnh vườn sau khi tăng chiều dài và rộng lên 5 m là:
\(\left(x+5\right)\left(3x+5\right)\left(m^2\right)\)
Vì diện tích tăng thêm \(385m^2\) nên ta có phương trình:
\(\left(x+5\right)\left(3x+5\right)=3x^2+385\)
\(\Leftrightarrow3x^2+20x+25=3x^2+385\)
\(\Leftrightarrow20x=360\)
\(\Leftrightarrow x=18\)
=> Chiều rộng ban đầu là 18 m, chiều dài ban đầu là 54 m.
\(ĐKXĐ:x\ne1;-4\)
\(\frac{15}{x^2+3x-4}-1=12\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)
\(\Leftrightarrow\frac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12.\frac{3\left(x-1\right)+x+4}{3\left(x+4\right)\left(x-1\right)}\)
\(\Leftrightarrow\frac{-x^2+12x+4}{\left(x-1\right)\left(x+4\right)}=\frac{4\left(3x-3+x+4\right)}{\left(x+4\right)\left(x-1\right)}\)
\(\Rightarrow-x^2+12x+4=4\left(4x+1\right)\)
\(\Leftrightarrow-x^2+12x+4-16x-4=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow-x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
Nửa chu vi hình chữ nhật là
400:2=200( m)
Chiều dài là
(200+60):2=130( m)
Chiều rộng là
200-130=70( m)
Đáp số...............................
ta xét các tích khi nhân ra thành 150
trong đó ta có tích:
150 = 15x10
15-10=5m
vậy chiều dài = 15m
rộng = 10 m
- giải theo phương pháp lớp chín ý, gọi cd, cr ý