Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có phương trình cân bằng nhiệt:
Qtỏa=Qthu
\(\Leftrightarrow mC\left(t_1-t\right)=m_2C\left(t-t_2\right)\)
\(\Leftrightarrow m\left(60-t\right)=t-20\)
\(\Leftrightarrow m=\frac{t-20}{60-t}\)
rót tiếp từ bình 2 sang bình 1 thì ta có:
Qtỏa=Qthu
\(\Leftrightarrow\left(m_1-m\right)C\left(t_1-t'\right)=mC\left(t'-t\right)\)
\(\Leftrightarrow5-m=m\left(59-t\right)\)
\(\Leftrightarrow5-\frac{t-20}{60-t}=\frac{\left(t-20\right)\left(59-t\right)}{60-t}\)
\(\Leftrightarrow5\left(60-t\right)-\left(t-20\right)=\left(t-20\right)\left(59-t\right)\)
\(\Leftrightarrow300-5t-t+20=59t-t^2-1180+20t\)
\(\Leftrightarrow t^2-84t+1500=0\)
giải phương trình bậc hai ở trên ta có:
t=58,2 độ C hoặc
t=25,75 độ C
b)từ hai t trên ta suy ra hai m như sau;
m=21,2kg(loại do trong bình một chỉ có 5kg)hoặc
m=0,62kg(nhận)
vậy đáp án đúng là:
a)25,75 độ C
b)0,62kg
V1=5lít=>m1=5kg
V2=1lít=>m2=1kg
Gọi:
t1:nhiệt độ ban đầu của b1
t2:nhiệt độ ban đầu của b2
t'1:nhệt độ cân bằng của b1
t'2:nhiệt độ cân bằng của b2
m:lượng nước rót wa lại
Theo ptcbn:
nhlg toa ra của m nước 80*C rót từ b1wa b2=nhlg thu vào của b2
Q1=Q2
m.c.(t1-t'2)=m2.c.(t'2-t2)
m.(t1-t'2)=m2.(t'2-t2)
m.(60-t'2)=1(t'2-20) (1)
60m-mt'2=t'2-20 (2)
Theo ptcbn:
nhlg tỏa ra của fần nước còn lại trong b1=nhlg thu vao của m nước có nhiệt độ là t'2 rót từ b2 wa b1
Q'1=Q'2
(m1-m).c.(t1-t'1)=m.c.(t'1-t'2)
(m1-m).(t1-t'1)=m.(t'1-t'2)
(5-m).(60-59)=m.(59-t'2)
5-m=59m-mt'2
60m-mt'2=5 (3)
Từ (2) và (3)
=>t'2-20=5
=>t'2=25
Thế t'2=25 vào (1)
(1)<=>m.(60-25)=1.(25-20)
35m=5
=>m=5/35=1/7=0,143 kg
Vậy lượng nước rót wa rót lại gần bằng 0,143 kg
MÌNH THAM KHẢO NHÉ
a) Xét △ABO và △A′B′O có:
ABOˆ=A′B′Oˆ=900
BOAˆ=B′OA′ˆ (hai góc đối đỉnh)
⇒ Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
⇒ \(\frac{A'B'}{AB}=\frac{B'O}{BO}\)
⇒ Độ phóng đại ảnh \(k=\frac{A'B'}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự: Hai tam giác A'B'F' và IOF' là hai tam giác đồng dạng
⇒\(\text{ }\frac{B'F'}{OF'}=\frac{A'B'}{IO}=\frac{d'}{d}\)
Áp dụng tính chất của tỉ lệ thức: \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
⇒\(\frac{1}{f}=\frac{1}{d}=\frac{1}{f'}\)
CÓ MẤY CÁI KÍ HIỆU GÓC, MÌNH KHÔNG BIẾT VIẾT, BẠN THÔNG CẢM
a) Xét \(\Delta ABO\) và \(\Delta A'B'O'\)
\(ABO=A'B'O=90^0\)
\(BOA=B'O'A\)( hai góc đối đỉnh )
\(\Rightarrow\)Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
\(\Rightarrow\frac{A'B}{AB}=\frac{B'O}{BO}\)
\(\Rightarrow\)Độ phóng đại ảnh : \(k=\frac{A'B}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự : Hai tam giác A'B'F và IOF' là hai tam giác đồng dạng
\(\Rightarrow\frac{B'F'}{OF}=\frac{A'B}{TO}=\frac{d'}{d}\)
Dựa vào tính chất của tỉ lệ thức : \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
Xét tg ABO \(\sim\Delta A'B'O\)
\(\dfrac{AB}{A'B'}=\dfrac{AO}{A'O}\)=>A'O \(=\dfrac{A'B'.AO}{AB}\)=\(\dfrac{3.2}{1,2}\)=5 (m)(1)
Vậy ảnh cách tk 1 khoảng bằng 5m
Xét tam giác OIF' đồng dạng vs tg A'B'F'
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\)=\(\dfrac{OF'}{A'O-OF'}\)
mà OI = AB = 1,2 m nên
\(\dfrac{AB}{A'B'}=\dfrac{OF'}{A'O-OF'}\)(2)
Từ (1) và (2) suy ra \(\dfrac{AO}{A'O}\)=\(\dfrac{OF'}{A'O-OF'}\)
=>AO(A'O-OF')=OF'. AO
=> 2.(5-OF')=OF'.2
=> 10 -2OF'=2OF'
=> OF'=2,5 (m)
Vậy tiêu cự của TK là 2,5m
+ Từ B vẽ tia tới đi qua quang tâm O cho tia ló tiếp tục truyền thẳng
+ Từ B vẽ tia tới song song vs trục chính cho tia ló đi qua tiêu điểm F'
+ Tia ló thứ nhất và tia ló thứ 2 giao nhau tại một điểm thì điểm đó là B'
+ Từ B' hạ vuông góc xuống trục chính ta đc A'
Để có được ảnh rõ nét trên màn tức là di chuyển đến TK đến vị trí mà màn chắn hứng được ảnh thật của vật.
Ta có 2 vị trí có thể cho ảnh rõ nét là khi vật cách TK 1 đoạn d hoặc d'=L-d sao cho thỏa mãn: \(\dfrac{1}{d}+\dfrac{1}{d'}=\dfrac{1}{f}\)
Từ công thức suy ra : \(f\left(d+d'\right)=d.d'\)
Giả sử d>d. Ta có: L=d+d' và l=d-d'
=> \(L^2-l^2=\left(d+d'\right)^2-\left(d-d'\right)^2=4d.d'\left(1\right)\)
và : \(4Lf=4\left(d+d'\right)f=4d.d'\left(2\right)\)
Từ (1) và (2) => \(L^2-l^2=4Lf.\)
A B F F'
Giải:
\(\Delta OAB\) đồng dạng \(\Delta OA'B'\)\(\Rightarrow\frac{AB}{A'B'}=\frac{OA}{OA'}\left(1\right)\)
\(\Delta FOI\) đồng dạng \(\Delta F'A'B'\)
\(\Rightarrow\frac{OI}{A'B'}=\frac{F'O}{F'A'}\Leftrightarrow\frac{OI}{A'B'}=\frac{F'O}{OA'-OF'}\left(2\right)\)
Mà \(OI=AB\) nên \(\left(1\right)=\left(2\right)\)
\(\frac{OA}{OA'}=\frac{F'O}{OA'-OF'}\)
\(\Rightarrow OA'=48cm\)
\(\Rightarrow\frac{A'B'}{AB}=\frac{48}{16}=3\)
a. Thấu kính này là TLHT vì ảnh ngược chiều vs vật...cho ảnh thật,,...
b. hình tự vẽ...
f= OF = OF'= 4.8 cm
a) O B A I F F' B' A' Genius Kronos Huy d d'
b) Ta có ΔBOA∼ΔB'OA'
=>\(\dfrac{BA}{AO}=\dfrac{B'A'}{OA'}\)
=>\(\dfrac{h}{d}=\dfrac{h'}{d'}\Rightarrow\dfrac{h}{h'}=\dfrac{d}{d'}\) (1)
Lại có ΔIOF'∼ΔB'A'F'
=>\(\dfrac{IO}{A'B'}=\dfrac{OF'}{A'F'}\)
mà IO=AB=h
A'F'=A'O-OF'=d'-f'
=>\(\dfrac{h}{h'}=\dfrac{f}{d'-f'}\) (2)
Từ (1) và (2)
=>\(\dfrac{d}{d'}=\dfrac{f}{d'-f'}\)
=>dd'-df'=d'f
Chia mỗi vế cho dd'f
(f=f ')
=>\(\dfrac{1}{f}-\dfrac{1}{d'}=\dfrac{1}{d}\)
=>\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\)
đpcm