Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi chiều rộng của khu vườn là x>1 (m)
Chiều dài khu vườn: \(x+5\) (m)
Diện tích ban đầu: \(x\left(x+5\right)\)
Diện tích sau khi làm lối đi: \(\left(x-1\right)\left(x+4\right)\)
Theo bài ra ta có pt:
\(x\left(x+5\right)-\left(x-1\right)\left(x+4\right)=66\)
\(\Leftrightarrow2x=62\Rightarrow x=31\)
Vậy khu vườn ban đầu dài 36m, rộng 31m

Gọi chiều rộng khu vườn lúc đầu là x(m)
thì chiều dài khu vườn lúc đầu là x+3(m)
diện tích khu vườn lúc đầu là x(x+3)(m2)
chiều rộng khu vườn lúc sau là x+4(m)
chiều dài khu vườn lúc sau là x+5(m)
ĐK 0<x
theo đề bài ta có
\(\left(x+4\right)\left(x+5\right)=x\left(x+3\right)+80\)
⇔\(x^2+9x+20=x^2+3x+80\)
⇔\(6x=60\)
⇔\(x=10\)(N)
Vậy chiều rộng khu vườn lúc đầu là 10 m
thì chiều dài khu vườn lúc đầu là 10+6=16 m
Gọi chiều rộng khu vườn lúc đầu là x(m)
thì chiều dài khu vườn lúc đầu là x+6(m)
diện tích khu vườn lúc đầu là x(x+6)(m2)
chiều rộng khu vườn lúc sau là x+4(m)
chiều dài khu vườn lúc sau là x+8(m)
ĐK 0<x
theo đề bài ta có
\(\left(x+4\right)\left(x+8\right)=x\left(x+6\right)+80\)
⇔\(x^2+12x+32=x^2+6x+80\)
⇔\(6x=48\)
⇔\(x=8\)(N)
Vậy chiều rộng khu vườn lúc đầu là 8 m
thì chiều dài khu vườn lúc đầu là 8+6=14 m

Gọi chiều rộng là x
=>Chiều dài là x+3
Theo đề, ta có: x+18=2(x+x+3)
=>4x+6=x+18
=>3x=12
=>x=4
=>Chiều dài là 7m
S=4*7=28m2

Gọi chiều rộng khu vườn là x(x>0)(m)
=> Chiều dài khu vườn : 3x (m)
Theo bài ta có
(x - 3)(3x-3) = 4329
=> 3x2 - 3x - 9x + 9 = 4329
=> 3x2 - 12x + 9 = 4329
=> 3x2 -12x - 4320 = 0
=>\(\left[{}\begin{matrix}x=40\\x=-36\left(loại\right)\end{matrix}\right.\)
Vậy chiều rộng khu vườn là 40m
Chiều dài khu vườn là 40.3 = 120m

Câu 1:
Gọi chiều rộng khu vườn là \(x\) (m) \(\left(x>0\right)\)
\(\Rightarrow\) Chiều dài khu vườn là \(\dfrac{7}{4}x\) (m).
Diện tích khu vườn là 1792 m2 \(\Rightarrow\dfrac{7}{4}x^2=1792\)
\(\Rightarrow x^2=1024\Rightarrow x=32\) (m)
\(\Rightarrow\) Chiều rộng khu vườn là \(32\)m, chiều dài khu vườn là \(\dfrac{7}{4}.32=56\)m
\(\Rightarrow\) Chu vi khu vườn là: \(2.\left(32+56\right)=176\) (m).
(Bạn có thể gọi chiều dài là x, chiều rộng là y nhé.)
Câu 2:
Bạn kiểm tra lại đề bài nhé. Thiếu dữ kiện để có thể lập được hệ phương trình ạ.
Câu 2:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh vườn(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì diện tích ban đầu của mảnh vườn là 720m2 nên ta có phương trình:
ab=720(1)
Vì khi tăng chiều dài 6m và giảm chiều rộng 4m thì diện tích mảnh vườn không đổi nên ta có phương trình:
\(\left(a+6\right)\left(b-4\right)=720\)
\(\Leftrightarrow ab-4a+6b-24=720\)
\(\Leftrightarrow-4a+6b-24=0\)
\(\Leftrightarrow-4a+6b=24\)(2)
Từ (1) và (2) ta có được hệ phương trình:
\(\left\{{}\begin{matrix}ab=720\\-4a+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-4\cdot\dfrac{720}{b}+6b=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-\dfrac{2880}{b}+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6b^2-24b-2880=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6\left(b^2-4b-480\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\b^2-4b+4-484=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2\right)^2-484=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2-22\right)\left(b-2+22\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-24\right)\left(b+20\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b-24=0\\b+20=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b=24\left(nhận\right)\\b=-20\left(loại\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{24}=30\left(nhận\right)\\b=24\end{matrix}\right.\)
Vậy: Chiều dài của mảnh vườn là 30m; Chiều rộng của mảnh vườn là 24m

Gọi chiều rộng mảnh vườn là x, chiều dài mảnh vườn là 3x
Diện tích mảnh vườn ban đầu là: \(3x^2\left(m^2\right)\)
Diện tích mảnh vườn sau khi tăng chiều dài và rộng lên 5 m là:
\(\left(x+5\right)\left(3x+5\right)\left(m^2\right)\)
Vì diện tích tăng thêm \(385m^2\) nên ta có phương trình:
\(\left(x+5\right)\left(3x+5\right)=3x^2+385\)
\(\Leftrightarrow3x^2+20x+25=3x^2+385\)
\(\Leftrightarrow20x=360\)
\(\Leftrightarrow x=18\)
=> Chiều rộng ban đầu là 18 m, chiều dài ban đầu là 54 m.
\(ĐKXĐ:x\ne1;-4\)
\(\frac{15}{x^2+3x-4}-1=12\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)
\(\Leftrightarrow\frac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12.\frac{3\left(x-1\right)+x+4}{3\left(x+4\right)\left(x-1\right)}\)
\(\Leftrightarrow\frac{-x^2+12x+4}{\left(x-1\right)\left(x+4\right)}=\frac{4\left(3x-3+x+4\right)}{\left(x+4\right)\left(x-1\right)}\)
\(\Rightarrow-x^2+12x+4=4\left(4x+1\right)\)
\(\Leftrightarrow-x^2+12x+4-16x-4=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow-x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
help me
ok