Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số cách chọn là:
\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)
b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)
Số cách chọn 9 viên ko có đủ 3 màu là:
\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)
=>Có 4939 cách
Giả sử trong 4 viên đó có 4 viên đỏ
=>Có \(C^4_6=15\)
=>\(n\left(\overline{A}\right)=15\)
\(n\left(\Omega\right)=C^4_{15}=1365\)
=>\(P_A=1-\dfrac{15}{1365}=\dfrac{90}{91}\)
\(n\left(C\right)=C^2_6\cdot8\cdot10+C^2_8\cdot6\cdot10+C^2_{10}\cdot6\cdot8=5040\)
Số cách lấy ra là:
\(C^1_3\cdot C^3_9+C^2_3\cdot C^2_9+C^3_3\cdot C^1_9=369\left(cách\right)\)
a, Lấy ngẫu nhiên 3 viên bi có \(C_{16}^3\)
\(\Rightarrow n\left(\Omega\right)=C^3_{16}\)
\(A"\) lấy ba bi có màu trắng "
\(\Rightarrow n\left(A\right)=C_7^3\)
\(\Rightarrow P\left(A\right)=\dfrac{C_7^3}{C_{16}^3}=\dfrac{1}{16}\)
b, B " Lấy 3 bi không có màu đỏ
TH1 : 3 viên màu trắng \(C_7^3\)
TH2 : 3 viên màu đen \(C_7^3\)
TH3 : 3 viên đủ 2 màu đen trắng : \(C_{13}^3-C_7^3-C_6^3\)
\(\Rightarrow n\left(B\right)=C_7^3+C_6^3+\left(C_{13}^3-C_7^3-C_6^3\right)=286\)
\(\Rightarrow P\left(B\right)=\dfrac{286}{C_{16}^3}=\dfrac{143}{280}\)
Tổng số kết quả của phép thử có thể xảy ra là \(n(\Omega ) = C_{12}^4 = 495\)
a) Gọi biến cố A: “Trong 4 viên bi lấy ra có ít nhất 1 bi xanh”, suy ra biến cố đối của biến cố A là \(\overline A \): “Trong 4 viên bi lấy ra không có viên bi xanh nào”
\(\overline A \) xảy ra khi 4 viên bi lấy ra chỉ có màu đỏ hoặc vàng. Số kết quả thuận lợi cho \(\overline A \)là: \(n(A) = C_9^4 = 126\)
Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{126}}{{495}} = \frac{{14}}{{55}}\)
Vậy xác suất của biến cố A là \(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{{14}}{{55}} = \frac{{41}}{{55}}\)
b) Gọi biến cố A: “Trong 4 viên bi lấy ra có ít nhất 2 bi đỏ ”, suy ra biến cố đối của biến cố A là \(\overline A \): “Trong 4 viên bi lấy ra có nhiều hơn 2 bi đỏ”
\(\overline A \) xảy ra khi 4 viên bi lấy ra có 3 hoặc 4 bi đỏ. Số kết quả thuận lợi cho \(\overline A \)là: \(n(A) = C_4^3.8 + C_4^4 = 33\)
Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{33}}{{495}} = \frac{1}{{15}}\)
Vậy xác suất của biến cố A là \(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{15}} = \frac{{14}}{{15}}\)
Ta có \(n\left( \Omega \right) = C_{12}^6 = 924\). Gọi E là biến cố: “Trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen”. Có \(C_6^3 = 20\) cách chọn 3 viên bi trắng, có \(C_4^2 = 6\) cách chọn 2 viên bi đỏ, có \(2\) cách chọn 1 viên bi đen.
Theo quy tắc nhân, ta có: \(n\left( E \right) = 20.6.2 = 240\). Vậy \(P\left( E \right) = \frac{{240}}{{924}} = \frac{{20}}{{77}}\).
a: Số cách chọn 6 viên bi đỏ là \(C^6_{12}\left(cách\right)\)
Số cách chọn 6 viên bi vàng là \(C^6_8\left(cách\right)\)
=>Tổng số cách chọn 6 viên bi mà chỉ có 1 màu là \(C^6_{12}+C^6_8=952\left(cách\right)\)
Số cách chọn 6 viên bi bất kì là \(C^6_{20}=38760\left(cách\right)\)
Xác suất là \(\dfrac{952}{38760}=\dfrac{7}{285}\)
b: TH1: 5 đỏ, 1 vàng
=>Số cách chọn là \(C^5_{12}\cdot C^1_8=6336\left(cách\right)\)
TH2: 6 đỏ
=>Số cách chọn là \(C^6_{12}=924\left(cách\right)\)
Xác suất để chọn 6 viên bi, trong đó số viên bi đỏ nhiều hơn 4 là \(\dfrac{6336+924}{C^6_{20}}=\dfrac{121}{646}\)
=>Xác suất để chọn 6 viên bi, trong đó số viên bi đỏ ít hơn hoặc bằng 4 là \(1-\dfrac{121}{646}=\dfrac{525}{646}\)
c: Số cách chọn 6 viên bi mà trong đó không có viên màu vàng nào là \(C^6_{12}\left(cách\right)\)
=>Số cách chọn 6 viên bi mà trong đó có ít nhất 1 viên màu vàng là \(C^6_{20}-C^6_{12}=37836\left(cách\right)\)
=>Xác suất là \(\dfrac{37836}{C^6_{20}}=\dfrac{3153}{3230}\)
d: Số cách chọn 6 viên bi sao cho không có đủ 2 màu là \(C^6_8+C^6_{12}=952\left(cách\right)\)
=>Số cách chọn 6 viên bi sao cho có đủ 2 màu là \(C^6_{20}-952=37808\left(cách\right)\)
=>Xác suất là \(\dfrac{37808}{C^6_{20}}=\dfrac{278}{285}\)