Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Bước 1. Tính số cách lấy ra 8 viên bi bất kì. có C 16 8 cách.
Bước 2. Tính số cách lấy ra 8 viên bi không có màu vàng mà chỉ có hai màu xanh và đỏ
Bước 3. Tính số cách lấy ra 8 viên bi không có màu đỏ mà có hai màu xanh và vàng.
Bước 4. Tính số cách lấy ra 8 viên bi không có màu xanh mà chỉ có hai màu đỏ và vàng.
Vậy có tất cả C 16 8 - ( 495 + 165 + 9 ) = 12201 cách
Sử dụng phương pháp gián tiếp:
Lấy ra 9 viên bi trong 15 viên bi bất kỳ, có C 15 9 cách.
Trường hợp 1: lấy 9 viên bi chỉ có 2 màu là xanh và đỏ, có C 11 9 cách.
Trường hợp 2: lấy 9 viên bi chỉ có 2 màu là xanh và vàng, có C 9 9 cách.
Trường hợp 3: lấy ra 9 viên bi chỉ có màu đỏ và vàng, có C 10 9 cách.
Vậy có : C 15 9 - ( C 11 9 + C 9 9 + C 10 9 ) = 4984 cách.
Chọn C.
Các trường hợp xảy ra theo yêu cầu đề:
Trường hơp 1: 2 xanh, 2 vàng, 2 đỏ, có: cách.
Trường hợp 2: 2 xanh,1 vàng, 3 đỏ, có: cách.
Vậy có : cách.
Chọn D.
a.
Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi
b.
Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ
Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách
c.
Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh
Số cách lấy là:
\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách
Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?
Không gian mẫu: \(C_{15}^4\)
a.
Số cách lấy 4 viên bi trong đó có 3 viên màu đỏ: \(C_7^3C_8^1\)
Xác suất: \(P=\dfrac{C_7^3.C_8^1}{C_{15}^4}\)
b.
Lấy 4 viên không có viên đỏ nào (lấy từ 8 viên 2 màu còn lại): \(C_8^4\) cách
Lấy 4 viên có ít nhất 1 viên đỏ: \(C_{15}^4-C_8^4\)
Xác suất: \(P=\dfrac{C_{15}^4-C_8^4}{C_{15}^4}\)
c.
Các trường hợp thỏa mãn: (2 đỏ 1 xanh 1 vàng), (1 đỏ 2 xanh 1 vàng), (1 đỏ 1 vàng 2 xanh)
Số cách lấy: \(C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2\)
Xác suất: \(P=\dfrac{C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2}{C_{15}^4}\)
Chọn D
Cách 1:
Số phần tử của không gian mẫu: .
Gọi A là biến cố: “lấy ra 4 viên bi có đủ ba màu”
Ta xét các khả năng của biến cố A:
TH1: Lấy được 1 bi trắng, 1 bi xanh và 2 bi vàng, trường hợp này có (cách).
TH2: Lấy được 1 bi trắng, 2 bi xanh và 1 bi vàng, trường hợp này có (cách).
TH3: Lấy được 2 bi trắng, 1 bi xanh và 1 bi vàng, trường hợp này có (cách).
Số cách lấy 4 viên bi có đủ cả ba màu là:
Xác suất cần tìm là
Cách 2:
Số phần tử của không gian mẫu:
Gọi A là biến cố: “lấy ra 4 viên bi không có đủ ba màu” .
Ta có:
Xác suất của biến cố A là:
Vậy xác suất cần tìm là: .
a, Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\) cách
Số cách chọn 6 viên chỉ màu vàng là \(C_8^6=28\) cách
Số cách chọn 6 viên chỉ màu xanh là \(C_{10}^6=210\) cách
\(\Rightarrow\) có \(100947-28-210=100709\) cách thỏa mãn.
b, Số cách chọn 6 viên có đủ 3 màu là \(5.8.10=400\)
Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\)
\(\Rightarrow\) có \(100947-400=100547\) cách thỏa mãn.
a. Lấy ra 2 xanh (nghĩa là 2 xanh 1 vàng)
Có \(C_6^2.C_4^1=60\) cách
b. Lấy ra ít nhất 2 viên xanh có 2 TH: 2 xanh 1 vàng hoặc cả 3 xanh
Có: \(60+C_6^3=80\) cách
Đáp án A
Bước 1.
Tính số cách lấy ra 8 viên bi bất kì có C 16 8 c á c h
Bước 2
Tính số cách lấy ra 8 viên bi không có màu vàng mà chỉ có hai màu xanh và đỏ.
Bước 3
Tính số cách lấy ra 8 viên bi không có màu đỏ mà có hai màu xanh và vàng.
Bước 4
Tính số cách lấy ra 8 viên bi không có màu xanh mà chỉ có hai màu đỏ và vàng
Vậy có tất cả 1221 cách