Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n\left(\Omega\right)=C^3_{30}=4060\)
n(A)\(C^1_{15}\cdot C^2_{15}=1575\)
=>P=1575/4060=45/116
- Số cách lấy ngẫu nhiên 2 quả cầu: \(n\left( \Omega \right) = C_9^2 = 36\)
- Số cách lấy 2 quả khác màu là:
+ 1 quả màu xanh và 1 quả màu vàng: \(C_4^1 \times C_3^1 = 12\)
+ 1 quả màu xanh và 1 quả màu đỏ: \(C_4^1 \times C_2^1 = 8\)
+ 1 quả màu đỏ và 1 quả màu vàng: \(C_2^1 \times C_3^1 = 6\)
=> Tổng số cách lấy ra 2 quả khác màu là: 26 cách
- Số cách lấy 2 quả khác màu trùng số:
+ 2 quả cùng là số 1: \(C_3^2 = 3\)
+ 2 quả cùng là số 2: \(C_3^2 = 3\)
+ 2 quả cùng là số 3: \(C_2^2 = 1\)
=> Tổng số cách lấy ra 2 quả khác màu trùng số là: 7 cách
=> Số cách lấy ra 2 quả khác màu khác số là: 26 – 7 = 19 (cách)
=> Xác suất để lấy ra 2 quả khác màu khác số là: \(P = \frac{{19}}{{36}}\)
Xác suất lấy ra quả cầu không có số 1 hoặc số 5 từ túi đầu tiên: \(\frac{8}{{10}} = \frac{4}{5}\)
Xác suất lấy được quả cầu không có số 1 hoặc số 5 từ túi thứ hai là: \(\frac{8}{{10}} = \frac{4}{5}\)
Vì lấy ngẫu nhiên từ hai túi khác nhau một quả cầu nên hai biến cố quả cầu lấy ra mỗi túi không có số 1 hoặc số 5 là độc lập.
Vậy xác suất để trong hai quả cầu được lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5 là: \(\frac{4}{5}.\frac{4}{5} = \frac{{16}}{{25}}\)
Gọi n là số quả cầu lấy ra. \(\left(n\in N^{\text{*}};1\le n\le9\right)\)
Không gian mẫu \(\left|\Omega\right|=C^n_9\)
Biến cố A : " Có ít nhất 1 số chia hết cho 4"
=> Biến cố \(\overline{A}\) : " Không có số nào chia hết cho 4"
\(\Rightarrow\left|\Omega_{\overline{A}}\right|=C^n_7\\ \Rightarrow P_{\overline{A}}=\dfrac{C^n_7}{C^n_9}=\dfrac{\left(9-n\right)\left(8-n\right)}{8\cdot9}=1-P_A< \dfrac{1}{6}\\ \Rightarrow n^2-17n+72< 12\\ \Rightarrow5< n< 12\)
Vậy cần phải lấy ít nhất 6 quả để XS có ít nhất 1 số chia hết cho 4 > 5/6
Chọn D
Chọn ngẫu nhiên một quả trong 30 quả có 30 cách. Vậy n ( Ω ) = 30.
Gọi A là biến cố: “lấy được quả cầu màu xanh”.
Ta có n(A) = 20 => P(A) = 2 3
Gọi B là biến cố: “lấy được quả cầu ghi số lẻ”.
Ta có n(B) = 15 => P(B) = 1 2 .
Số quả cầu vừa màu xanh vừa ghi số lẻ: 10 (quả).
Xác suất để lấy được quả cầu vừa màu xanh vừa ghi số lẻ:
Xác suất để lấy được quả cầu màu xanh hay ghi số lẻ:
Đáp án C.
Số cách lấy ngẫu nhiên 4 quả là: C 10 4 (cách)
Số cách lấy được 2 quả đỏ, 2 trắng là: C 4 2 . C 7 2 (cách)
Xác suất để lấy được đúng 2 quả đỏ là:
Rõ ràng trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả màu đỏ, 5 quả màu đỏ ghi số chẵn, 25 quả màu xanh hoặc ghi số lẻ. Vậy theo định nghĩa
Trong đó A, B, C, D là các biến cố tương ứng với các câu a), b), c) ,d).
Chọn A
Số cách lấy ra 6 quả cầu từ 10 quả cầu là
Gọi A là biến cố ‘‘Trong 6 quả cầu lấy ra có không quá 1 quả cầu trắng”.
là biến cố‘‘Trong 6 chi tiết lấy ra có 2 quả cầu trắng”.
Số cách lấy 4 quả cầu từ 6quả cầu đỏ và vàng là .
Số cách lấy 2 quả cầu trắng là .
Theo quy tắc nhân ta có .
Vậy xác suất
.
Không gian mẫu: \(C_9^3\)
Có 2 cách lấy thỏa mãn: (2 quả số 1, một quả số 3) hoặc (1 quả số 1, hai quả số 2)
\(\Rightarrow C_2^2.C_4^1+C_2^1.C_3^2\) cách
Xác suất: \(P=\dfrac{C_2^2.C_4^1+C_2^1.C_3^2}{C_9^3}=...\)