K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2022

Không gian mẫu: \(C_{15}^4\)

a.

Số cách lấy 4 viên bi trong đó có 3 viên màu đỏ: \(C_7^3C_8^1\)

Xác suất: \(P=\dfrac{C_7^3.C_8^1}{C_{15}^4}\)

b.

Lấy 4 viên không có viên đỏ nào (lấy từ 8 viên 2 màu còn lại): \(C_8^4\) cách

Lấy 4 viên có ít nhất 1 viên đỏ: \(C_{15}^4-C_8^4\)

Xác suất: \(P=\dfrac{C_{15}^4-C_8^4}{C_{15}^4}\)

c.

Các trường hợp thỏa mãn: (2 đỏ 1 xanh 1 vàng), (1 đỏ 2 xanh 1 vàng), (1 đỏ 1 vàng 2 xanh)

Số cách lấy: \(C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2\)

Xác suất: \(P=\dfrac{C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2}{C_{15}^4}\)

24 tháng 7 2019

Gọi A là biến cố: “trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ.

Trong hộp có tất cả:  5+ 15 + 35 = 55 viên bi

- Số phần tử của không gian mẫu:  Ω =   C 55 7 .

- A ¯  là biến cố: “trong số 7 viên bi được lấy ra không có viên bi màu đỏ nào.

=> n A ¯ = C 20 7 .  

Vì A và A ¯  là  hai biến cố đối nên:  n A = Ω − n A ¯ = C 55 7 − C 20 7 .

Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ là  P A = C 55 7 − C 20 7 C 55 7 .

Chọn đáp án B.

8 tháng 2 2017

Gọi A  là biến cố lấy ra được 3 viên bi màu đỏ.

Số cách lấy 3 viên bi từ 20 viên bi là ​ C 20 3  nên ta có Ω = C 20 3 = 1140 .

Số cách lấy 3 viên bi màu đỏ là ​ C 8 3   =    56  nên Ω A = 56 .

Do đó:  P ( A ) = 56 1140 = 14 285

Đáp án B

NV
25 tháng 12 2020

Không gian mẫu: \(C_{14}^5\)

Các cách chọn thỏa mãn gồm có: (1 đỏ 1 vàng 3 xanh), (2 đỏ 1 vàng 2 xanh), (1 đỏ 2 vàng 2 xanh)

Số cách: \(C_5^1C_6^1C_3^3+C_5^2C_6^1C_3^2+C_5^1C_6^2C_3^2\)

Xác suất: \(P=\dfrac{C_5^1C_6^1C_3^3+C_5^2C_6^1C_3^2+C_5^1C_6^2C_3^2}{C_{14}^5}=...\)

25 tháng 12 2020

Quảng cáo trắng trợn ghê tar :3 Cơ mà có mod Lâm là đủ rồi á THẦY :)

3 tháng 5 2018

Ta có, số phần tử của không gian mẫu  n ( Ω ) = C 10 2

Gọi các biến cố: D: “lấy được 2 viên đỏ” ; X: “lấy được 2 viên xanh” ;

V: “lấy được 2 viên vàng”

Ta có D, X, V là các biến cố đôi một xung khắc và  C = D ∪ X ∪ V

P ( C ) = P ( D ) +    P ( X ) + P ( V ) =    C 4 2 C 10 2 + ​  C 3 2 C 10 2   + ​ C 2 2 C 10 2 = 2 9

Chọn đáp án B

29 tháng 11 2021

Tham khảo

Không gian mẫu img1  Trường hợp 1: Lấy 3 viên bi cùng màu xanh ⇒ có img2 cách chọn Trường hợp 2: Lấy 3 viên bi cùng màu đỏ ⇒ có img3 cách chọn Trường hợp 3: Lấy 3 viên bi cùng màu vàng ⇒ có img4 cách chọn Do đó suy ra img5.  

4 tháng 3 2017

Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố 2 viên bi được lấy vừa khác màu vừa khác số .

●   Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi đỏ là 4.4=16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

●   Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi vàng là 3.4=12cách.

●   Số cách lấy 2 viên bi gồm: 1 bi đỏ và 1 bi vàng là 3.3=9 cách.

Suy ra số phần tử của biến cố A là 16+12+9=37.

Vậy xác suất cần tính .

Chọn B.

24 tháng 12 2022

\(n\left(\Omega\right)=C^3_9\)

\(n\left(A\right)=C^2_5\cdot C^1_4\)

=>P(A)=10/21

NV
6 tháng 9 2021

Trong bình có tổng cộng \(5+6+7=18\) viên bi

Không gian mẫu: \(n_{\Omega}=C_{18}^4=3060\)

a. Gọi A là biến cố "trong 4 viên bi được chọn có đúng 1 viên đỏ"

Chọn 1 viên bi đỏ từ 5 viên đỏ: \(C_5^1\) cách

Chọn 3 viên còn lại từ 13 viên (6 trắng 7 vàng): \(C_{13}^3\) cách

\(\Rightarrow n_A=C_5^1.C_{13}^3=1430\)

Xác suất: \(P=\dfrac{1430}{3060}=...\)

b. Gọi B là biến cố "4 viên được chọn có ít nhất 2 viên vàng"

Chọn 4 viên có đúng 1 viên vàng (1 viên vàng và 3 viên từ 2 loại khác): \(C_7^1.C_{11}^3=1155\) cách

Chọn 4 viên không có viên vàng nào: \(C_{11}^4=330\) cách

Xác suất: \(P_B=1-\dfrac{1155+330}{3060}=...\)