K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

24 tháng 11 2017

A

20 tháng 12 2016

đề nghị khi đăng câu hỏi nên ấn 1 lần, sau ns sẽ hiện ra, tốn S ==

23 tháng 12 2016

đề sai

phải là 46/57

Bài toán thực tế để cho học sinh biết: Trong một cuộc thi Toán của một khối học sinh, người ta xếp n học sinh (n > 20) thành một hàng dọc theo đúng thứ tự từ trái sang phải theo số báo danh tăng dần.Biết rằng:Số báo danh của mỗi học sinh tạo thành một cấp số cộng (CSC) với số hạng đầu a₁ và công sai d > 0.Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh...
Đọc tiếp

Bài toán thực tế để cho học sinh biết: Trong một cuộc thi Toán của một khối học sinh, người ta xếp n học sinh (n > 20) thành một hàng dọc theo đúng thứ tự từ trái sang phải theo số báo danh tăng dần.
Biết rằng:

  1. Số báo danh của mỗi học sinh tạo thành một cấp số cộng (CSC) với số hạng đầu a₁công sai d > 0.
  2. Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh của học sinh đứng thứ 8 từ trái sang.
  3. Tổng số báo danh của tất cả học sinh có vị trí chẵn (tính từ trái sang) đúng bằng 3 lần tổng số báo danh của các học sinh có vị trí lẻ.
  4. Nếu cộng tất cả số báo danh ở vị trí là bội của 3 rồi trừ đi tổng các số báo danh ở vị trí là bội của 4 thì được 2025.
  5. Biết rằng hiệu giữa số báo danh của học sinh cuối cùngsố báo danh của học sinh thứ 11 chính là 11 lần công sai.

Hãy xác định số lượng học sinh n, cũng như các giá trị a₁d thỏa mãn toàn bộ các điều kiện trên.

1
19 tháng 9

*Giải bài toán*

Gọi số hạng đầu là \(a_1\) và công sai là \(d\). Số hạng tổng quát là \(a_n = a_1 + (n-1)d\).


*Điều kiện 1*

Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh của học sinh đứng thứ 8:

\[a_6 + a_7 + a_8 + a_9 + a_{10} = 5a_8\]

\[5a_1 + 35d = 5(a_1 + 7d)\]

Điều này luôn đúng.


*Điều kiện 2*

Tổng số báo danh của học sinh ở vị trí chẵn bằng 3 lần tổng số báo danh của học sinh ở vị trí lẻ:

\[S_{chẵn} = 3S_{lẻ}\]

Với \(n = 22\), ta có:

\[S_{chẵn} = a_2 + a_4 + ... + a_{22}\]

\[S_{lẻ} = a_1 + a_3 + ... + a_{21}\]

\[11a_1 + 110d = 3(11a_1 + 55d)\]

\[11a_1 + 110d = 33a_1 + 165d\]

\[22a_1 = -55d\]

\[2a_1 = -5d\]

*Điều kiện 3*

\[S_3 - S_4 = 2025\]

Với \(n = 22\), \(k = 7\), \(l = 5\):

\[S_3 = 7a_1 + 77d\]

\[S_4 = 5a_1 + 55d\]

\[2a_1 + 22d = 2025\]

*Điều kiện 4*

\[a_{22} - a_{11} = 11d\]

\[11d = 11d\]

\[n = 22\]

*Tìm \(a_1\) và \(d\)*

Từ \(2a_1 = -5d\) và \(2a_1 + 22d = 2025\):

\[2a_1 = -5d\]

\[-5d + 22d = 2025\]

\[17d = 2025\]

\[d = \frac{2025}{17} = 119\]

\[2a_1 = -5 \cdot 119\]

\[a_1 = -\frac{595}{2}\]

*Kết quả*

\[n = 22\]

\[a_1 = -\frac{595}{2}\]

\[d = 119\]

16 tháng 1 2019

Chọn C

4 tháng 5 2018

B = {5,10,15,20,25,30}, n(B) = 6

⇒P(B) =6/30 =1/5

Chọn đáp án là B

Nhận xét: học sinh có thể nhầm với số thẻ và số ghi trên thẻ, hoặc vận dụng nhầm công thức P(A) =(n(Ω))/(n(A)) dẫn đến các phương án khác còn lại.

NV
15 tháng 2 2020

Câu 1: dài quá, làm biếng, bài này rất nổi tiếng, tìm là thấy liền :D

Câu 2:

Gọi 2 số đó là \(x< y\), số cách chọn ra 2 số là \(C_{2019}^2\)

Theo bài ra ta có: \(\left\{{}\begin{matrix}x^2+3y=a^2\\y^2+3x=b^2\end{matrix}\right.\)

Do \(x< y\Rightarrow x^2< x^2+3y< x^2+3x< \left(x+2\right)^2\)

\(\Rightarrow x^2+3y=\left(x+1\right)^2\Rightarrow3y=2x+1\Rightarrow x=\frac{3y-1}{2}\)

\(\Rightarrow y^2+3\left(\frac{3y-1}{2}\right)=b^2\Leftrightarrow2y^2+9y-3=2b^2\)

\(\Leftrightarrow\left(4y+9\right)^2-105=16b^2\)

\(\Leftrightarrow\left(4y-4b+9\right)\left(4y+3b+9\right)=105\)

Phương trình nghiệm nguyên này cho ta 2 nghiệm là \(y=1\Rightarrow x=1\left(l\right)\)\(y=11\Rightarrow x=16\)

Vậy có đúng 1 cặp số tự nhiên thỏa mãn yêu cầu đề bài

\(\Rightarrow\) Xác suất \(P=\frac{1}{C_{2019}^2}\)

Sao nhỏ vậy ta?

NV
15 tháng 2 2020

Câu 3:

Không gian mẫu: \(9.A_9^7\)

Ta thấy tổng 10 chữ số phân biệt từ 0 đến 9 bằng 45

Do đó, tổng 8 chữ số phân biệt tối đa bằng \(45-1-0=44\), tối thiểu bằng \(45-9-8=28\)

Mà để tổng 8 số chia hết cho 45 \(\Rightarrow\) chia hết cho 9

\(\Rightarrow\) Tổng 8 chữ số phải bằng 36

Để ý 1 điều nữa là \(45-36=9\), do đó, để 8 chữ số có tổng 36 thì ta chỉ cần loại đi 1 cặp số có tổng là 9 từ 10 chữ số 0-9

- Nếu cặp bị loại là (0;9): số cuối có 1 cách chọn (5), 7 vị trí còn lại có \(7!\) cách hoán vị

- Cặp bị loại là (4;5): số cuối có 1 cách chọn (0), 7 vị trí còn lại có \(7!\) cách hoán vị

- Cặp bị loại ko chứa 0 hoặc 5 (gồm 18; 27; 36): nếu số cuối là 0 thì 7 vị trí còn lại có 7! cách hoán vị, nếu số cuối là 5 thì vị trí đầu có 6 cách chọn, 6 vị trí còn lại có 6! cách hoán vị \(\Rightarrow3.\left(7!+6.6!\right)\)

Vậy tổng cộng có: \(7!+7!+3\left(7!+6.6!\right)\) số

Xác suất: \(P=\frac{5.7!+18.6!}{9.A_9^7}=\frac{53}{2268}\)

Cách làm kiểu vậy, bạn coi lại mấy bước tính

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

27 tháng 11 2021

\(\left|\Omega\right|=20.20=400\)

\(\left|\Omega_A\right|=2.20=40\)

\(\Rightarrow P\left(A\right)=\dfrac{40}{400}=\dfrac{1}{10}\)