Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Nhiệt độ ân bằng của chì là 60
b,Nhiệt lượng mà nước thu vào là:
\(Q_1=m_1.c_1\Delta t_1=0,25.4200.\left(60-58,5\right)=1575\left(J\right)\)
c, nhiệt dung riêng củ chi là đồng là:
\(c_2=\dfrac{Q_1}{m_2.\Delta_2}=\dfrac{1575}{0,3.\left(100-60\right)}=131,25\left(\dfrac{J}{kg}.K\right)\)
CHÚC BẠN HỌC TỐT !!!!!!!
Giải thích các bước giải:
Chì Nước
m1 = 300 (g) = 0,3 (kg) m2 = 250 (g) = 0,25 (kg)
t1 = 100⁰C t2 = 58,5⁰C c2 = 4200 (J/kg.K)
t = 60⁰C
a)
Vì nước nóng tới 60⁰C nên đó là nhiệt độ sau khi cân bằng => Khi cân bằng nhiệt thì nhiệt độ của chì cũng là 60⁰C.
b)
Nhiệt lượng nước thu vào là:
Q2 = m2.c2.Δt2 = m2.c2.(t - t2)
= 0,25.4200.(60 - 58,5)
= 1575 (J)
c)Theo phương trình cân bằng nhiệt: Q1 = Q2 = 1575 (J)
Nhiệt dung riêng của chì là:
c1 = Q1/m1.Δt1 = Q/m1.(t1 - t)
= 1575/0,3.(100 - 60)
= 131,25 (J/kg.K)
Nhiệt độ cuối của chì cũng là nhiệt độ cuối của nước, nghĩa là \(=60^oC\)
Nhiệt lượng nước thu vào là
\(Q=m_1c_1\Delta t=4,910.0,25.\left(60-58,5\right)\\ =1571,25\left(J\right)\)
Nhiệt lượng trên do chì toả ra, do đó nhiệt dung riêng của chì là
\(C_2=\dfrac{Q}{m_2\Delta t}=\dfrac{1571,25}{0,3\left(100-60\right)}\approx130,93\left(J/kg.K\right)\)
refer
a) Nhiệt độ cuối cùng của chì cũng là nhiệt độ cuối cùng của nước, nghĩa là bằng 60°C
b) Nhiệt lượng nước thu vào:
Q = m1C1(t – t1) = 4 190.0,25(60 – 58,5)
= 1 571,25J
c) Nhiệt lượng trên do chì tỏa ra, do đó tính nhiệt dung riêng của chì:
C2=Q/m2(t2–t)=1571,25/0,3(100–60)≈130,93J/kg.K
1. Người ta thả ba miếng đồng, nhôm, chì có cùng khối lượng vào một cốc nước nóng. Hãy so sánh nhiệt độ cuối cùng của ba kim loại trên.
A. Nhiệt độ của ba miếng bằng nhau.
B. Nhiệt độ của miếng nhôm cao nhất, rồi đến miếng đồng, miếng chì.
C. Nhiệt độ của miếng chì cao nhất, rồi đến miếng đồng, miếng nhôm.
2. Người ta thả ba miếng đồng, nhôm, chì có cùng khối lượng và cùng được nun nóng tới 100oC vào một cốc nước lạnh. Hãy so sánh nhiệt lượng do các miếng kim loại kia truyền cho nước.
A. Nhiệt lượng của ba miếng truyền cho nước bằng nhau.
B. Nhiệt lượng của miếng nhôm truyền cho nước cao nhất, rồi đến miếng đồng, miếng chì.
C. Nhiệt độ của miếng chì truyền cho nước cao nhất, rồi đến miếng đồng, miếng nhôm.
D. Nhiệt độ của miếng đồng truyền cho nước cao nhất, rồi đến miếng nhôm, miếng chì.
Ta nói làm cho nước nóng lên 60 độ tức tcb là 60o
Nhiệt lượng nước thu vào
\(Q_{thu}=0,25.4200\left(60-58,5\right)=1575J\)
Ta có phương trình cân bằng nhiệt
\(Q_{toả}=Q_{thu}\\ \Leftrightarrow0,3.c\left(100-60\right)=1575\\ \Leftrightarrow c=131,25\)
Do dự hao phí nên nhiệt dung riêng của đồng có sự thay đổi từ môi trường ngoài
Tóm tắt:
\(m_1=300g=0,3kg\)
\(t_1=100^oC\)
\(m_2=250g=0,25kg\)
\(t_2=58,5^oC\)
\(t=60^oC\)
\(c_2=4200J/kg.K\)
=========
a) \(t=?^oC\)
b) \(Q_2=?J\)
c) \(c_1=?J/kg.K\)
So sánh với nhiệt dung riêng của chì trong bảng:
Giải:
a) Nhiệt độ của chì ngay khi có cân bằng là \(t=60^oC\)
b) Nhiệt lượng nước thu vào:
\(Q_2=m_2.c_2.\left(t+t_2\right)\)
\(\Leftrightarrow Q=0,25.4200.\left(60-58,5\right)=1575J\)
c) Nhiệt dung riêng của chì:
Thep phương tình cân bằng nhiệt:
\(Q_1=Q_2\)
\(\Leftrightarrow m_1.c_1.\left(t_1-t\right)=1575\)
\(\Leftrightarrow c_1=\dfrac{1575}{m_1.\left(t_1-t\right)}\)
\(\Leftrightarrow c_1=\dfrac{1575}{0,3.\left(100-60\right)}\)
\(\Leftrightarrow c_1=131,25J/kg.K\)
Nhiệt dung riêng này lớn hơn so với nhiệt dung riêng của chì trong bảng
Gọi nhiệt lượng của nước là \(Q_t\) từ \(20^oC\) về \(0^oC\) và của nước đá tan hết là \(Q_{thu}\), ta có:
\(Q_t=m_2c_2.\left(20-0\right)=0,3.4200.20=25200J\)
\(Q_{thu}=m_1.\lambda=0,1.3,4.10^5=34000J\)
Ta thấy Qthu > Qtỏa nên nước đá không tan hết. Lượng nước đá chưa tan hết là:
\(m=\frac{Q_{thu}-Q_{tỏa}}{\lambda}\)\(=\frac{8800}{3,4.10^5}=0,026\left(kg\right)\)
a) Nhiệt độ của chì ngay khi có cân bằng là \(60^0C\)
b) Nhiệt lượng nước thu vào:
\(Q_2=m_2.c_2.\left(t-t_2\right)=0,25.4200.\left(60-58,5\right)=1575J\)
c) Nhiệt dung riêng của chì:
Thep phương tình cân bằng nhiệt:
\(Q_1=Q_2\\ \Leftrightarrow m_1.c_1.\left(t_1-t\right)=m_2.c_2.\left(t-t_2\right)\\ \Leftrightarrow0,3.c_1.\left(100-60\right)=0,25.4200.\left(60-58,5\right)\\ \Leftrightarrow12c_1=1575\\ \Leftrightarrow c_1=131,25J/kg.K\)
Tóm tắt:
\(m_1=300g=0,3kg\)
\(t_1=100^oC\)
\(m_2=250g=0,25kg\)
\(t_2=58,5^oC\)
\(t=60^oC\)
\(\Rightarrow\Delta t_1=t_1-t=100-60=40^oC\)
\(\Rightarrow\Delta t_2=t-t_2=60-58,5=1,5^oC\)
\(c_2=4190J/kg.K\)
============
A. \(t=?^oC\)
B. \(Q_2=?J\)
C. \(c_1=?J/kg.K\)
D. So sánh nhiệt dung riêng của chì
Giải:
A. Nhiệt độ của chì ngay khi có cân bằng là: \(t=60^oC\)
B. Nhiệt lượng nước thu vào:
\(Q_2=m_2.c_2.\Delta t_2=0,25.4190.1,5=1571,25J\)
C. Nhiệt dung riêng của chì là:
Theo phương trình cân bằng nhiệt:
\(Q_1=Q_2\)
\(\Leftrightarrow m_1.c_1.\Delta t_1=1571,25\)
\(\Leftrightarrow c_1=\dfrac{1571,25}{m_1.\Delta t_1}\)
\(\Leftrightarrow c_1=\dfrac{1571,25}{0,3.40}\)
\(\Leftrightarrow c_1=130,9375J/kg.K\)
D. Có sự trên lệch này vì nhiệt dung riêng của chì đã được nhận thêm một nhiệt lượng khác
Nhiệt lượng miếng kim loại tỏa ra:
Q1 = m1 . c1 . (t1 – t) = 0,4 . c . (100 – 20)
Nhiệt lượng nước thu vào:
Q2 = m2 . c2 . (t – t2) = 0,5 . 4190 . (20 – 13)
Nhiệt lượng tỏa ra bằng nhiệt lượng thu vào:
Q1 = Q2
0,4 . c . (100 – 20) = 0,5 . 4190 . (20 – 13)
C = 458 J/kg.K
Kim loại này là thép.
Khi xảy ra cân bằng nhau ta có phương trình sau:
Q1 = Q2 <=> 0.5x4190x(20-13)=0.4xCkim loạix(100-20)
<=> 14665=32xCkim loại <=> Ckim loại = 14665:32 = 458,28
Nhiệt lượng trên là do chì tỏa ra, do đó có thể tính được nhiệt dung riêng của chì là: