K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại

bạn làm theo cách một chúng ta dc:

\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng  đúng v~

Khi 2x+3y-1=0 thì nó thành cách 2 đấy

17 tháng 7 2016

Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.

v~ thiệt

bây giờ mới thấy bài này nhảm v~

17 tháng 7 2016

hjjj

e nek

15 tháng 11 2015

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

=> \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

=> 6x = 12

=> x = 2

Thay x = 2 vào \(\frac{2x+1}{5}\), ta có:

\(\frac{2.2+1}{5}=\frac{3y-2}{7}=1\)

=> 3y - 2 = 7

=> 3y = 9

=> y = 3

=> x + y = 2 + 3 = 5

KL: x + y = 5

9 tháng 7 2017

Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Dựa theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

-> x = \(12.\dfrac{3}{2}=18\)

y =\(12.\dfrac{4}{3}=16\)

z =\(12.\dfrac{5}{4}\) = 15

1 tháng 11 2015

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

=> \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

=> 6x = 12

=> x = 2

Thay x = 2 ta có:

\(\frac{2.2+1}{5}=\frac{3y-2}{7}=1\)

=> 3y - 2 = 7

=> 3y = 9

=> y = 3

=> x + y = 2 + 3 = 5

1 tháng 1 2016

xin lỗi em mới học lớp 6 vô  chtt nhé 

tích ủng hộ nhân nam mới cái

1 tháng 1 2016

câu hỏi tương tự có đấy bạn

tick nha

25 tháng 12 2015

áp dụng tính chất dãy tỉ số bằng nhau là đc

18 tháng 7 2018

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

TH 1 : \(2x+3y-1=0\)

\(\Rightarrow\frac{2x+1}{5}=0;\frac{3y-2}{7}=0\)

\(\Rightarrow2x+1=0;3y-2=0\)

\(\Rightarrow2x=-1;3y=2\)

\(\Rightarrow x=-\frac{1}{2};y=\frac{2}{3}\)

TH 2 : \(2x+3y-1\ne0\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

Mà \(\frac{2x+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow\frac{2.2+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow1=\frac{3y-2}{7}\)

\(\Rightarrow3y-2=7\)

\(\Rightarrow3y=9\)

\(\Rightarrow y=3\)

Vậy \(\orbr{\begin{cases}x=-\frac{1}{2};y=\frac{2}{3}\\x=2;y=3\end{cases}}\)

18 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau :

\(\Rightarrow\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

Do \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

\(\Rightarrow6x=12\Leftrightarrow x=2\)

Xét :\(\frac{2x+1}{5}=\frac{3y-2}{7}\)

\(1=\frac{3y-2}{7}\)

\(\Rightarrow3y=9\Leftrightarrow y=3\)

1 tháng 6 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2-\left(2x+3y-1\right)}{5+7-6x}\)

                                                                  \(=\frac{2x+1+3y-2-2x-3y+1}{12-6x}=\frac{0}{12-6x}=0\)

  \(\frac{2x+1}{5}=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\)

                                                     \(\Leftrightarrow x=-\frac{1}{2}\)

 \(\frac{3y-2}{7}=0\Leftrightarrow3y-2=0\Leftrightarrow3y=2\)

                                                    \(\Leftrightarrow y=\frac{2}{3}\)

          \(x+y=\frac{-1}{2}+\frac{2}{3}=\frac{1}{6}\)

Vậy \(x+y=\frac{1}{6}\)