Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không k "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
P/s: Đây là diễn đàn để học, not phải nơi quảng cáo. Oke!
#HuyềnAnh#
Gọi \(S_n\) là cách thỏa ycđp
Muốn lên và xuống thang n bậc \(\left(n>3\right)\) có 3 cách :
- Bước tới bậc n-1 rồi bước 1 bậc để lên n và xuống 1 bậc: 1 cách.
- Bước tới bậc n-2 rồi bước 2 bậc để lên n, sau đó xuống 2 bậc hoặc bước lên tửng bậc, xuống từng bậc hoặc xuống 2 bậc: 3 cách.
- Bước tới bậc n-3 để lên n rồi xuống thang: 9 cách (lấy theo VD cho nhanh).
Ta có hệ thức truy hồi, với \(n>3\)3
\(S_n=S_{n-1}+S_{n-2}+S_{n-3}\)
Khởi tạo : \(S_1=1,S_2=3,S_3=9\)
Suy ra : \(S_{11}=157+289+531=977\) cách .
Chọn A.
Các mặt phẳng đôi một vuông góc và có một điểm chung.
Do 1 lần chỉ được bước 1 hoặc 2 bước nên để bước lên bậc thứ 6 ta phải bước đến bậc thứ 4. Tương tự với các bậc còn lại.
Ta sẽ tính số cách bước từ bậc 1 đến bậc 4, số cách bước từ bậc 6 đến bậc 9, từ bậc 11 đến bậc 14.
Từ bậc 1 đến bậc 4 có 5 cách đi: 1 - 1 - 1 - 1, 2 - 1 - 1, 1 - 2 - 1, 1 - 1 - 2, 2 - 2.
Từ bậc 6 đến 9 có 3 cách đi: 1 - 1 - 1, 1 - 2, 2 - 1.
Từ 11 đến 14 có 3 cách đi: 1 - 1 - 1, 1 - 2, 2 - 1.
Tổng cộng có: 5.3.3 = 45 cách.
Đáp án A