K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta tính như sau :Hệ thức lượng trong tam giác vuông

12 tháng 7 2017

1. Bài 1 e bấm máy

Nhấn Shift + log sẽ xuất hiện tổng sigma

e nhập như sau:

x = 1

cái ô trống ở trên nhập 2007

còn cái biểu thức trong dấu ngoặc đơn là  \(\left(\frac{1}{\left(X+1\right)\sqrt{X}+X\sqrt{X+1}}\right)\)

Rồi bấm "=" 

Chờ máy hiện kq sẽ hơi lâu :)

kq: 0.9776839079

12 tháng 7 2017

2. 

-B1: Tìm số dư của  \(2^{2009}\)  cho 11 đc kq là 6

- B2: Tìm số dư của  \(3^6\)  cho 11 đc kq là 3

Vậy  \(3^{2^{2009}}\)  chia 11 dư 3

3. Gọi độ dài đường chéo ngắn hơn là x, thì độ dài đường chéo kia là 3/2 x

Cạnh hình thoi: 37 : 4 = 9.25 (cm)

Theo định lý Pytago

\(x^2+\left(\frac{3}{2}x\right)^2=9.25^2\)

Vào Shift Solve giải ra tìm đc  \(x\approx5.130976815\)

Vậy  \(S=\frac{1}{2}x.\frac{3}{2}x=\frac{4107}{208}\approx19.7451923076\left(cm^2\right)\)

30 tháng 7 2016

A D C B O 1 2 3 4

30 tháng 7 2016

Bạn tự vẽ hình ... 

Ta có : \(\frac{S_1}{S_2}=\frac{OD}{OB}=\frac{S_4}{S_3}\) \(\Rightarrow S_1.S_3=S_2.S_4\)(1)

Dễ dàng chứng minh được S2=S4 (Bạn tự chứng minh)

Xét : \(\left(\sqrt{S_2}-\sqrt{S_4}\right)^2=0\Leftrightarrow S_2+S_4=2\sqrt{S_2.S_4}\Leftrightarrow S_2+S_4=2\sqrt{S_1.S_3}\)(suy ra từ (1))

Ta có : \(S_{ABCD}=S_1+S_2+S_3+S_4=S_1+S_3+2\sqrt{S_1.S_3}=\left(\sqrt{S_1}+\sqrt{S_3}\right)^2\)

Đến đây thay số là được :)

27 tháng 3 2022

Hình như đề sai nha bạn  

khi đó x + y + z = 1 ; x3 + y3 + z3 = 3

mà (x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x) 

<=> 13 = 3 + 3(x + y)(y + z)(z + x)

<=> 3(x + y)(y + z)(z + x) = -2 (vô lý vì 3(x + y)(y + z)(z + x) > 0) 

26 tháng 3 2022

Iuukweewddukhkhuckekwhkuekcwuhwdikeuldkhscuhkjdcshudscjhukidschfshjrskdhjfursiuhukerfhevkhgyrukeaguukeeafduuhkafeuiehfugkurfrfaegukurgfeuwukfegukuqrfrekgquufrequgkuefqehhmeihuewkfkihurfewuhkifrekwhhubrhefjwkhjbkefeqhebfeqkehbfjkeahejchkeajhhkeceahjbkceeabhjrevahkbjreahhjvjbhkvfhhjkfvsrhhkjbhkrjfeahjhkvreajhbkvesrhvbjerahjbkrfeajhhkefrahhikferahhkjfreahhrfeajfrehuiqkrhehiakfhfhhrefkiuahiukrfea

12 tháng 11 2015

kẻhình thoi ABCD ta có 

A=60o nên tam giác ABD đều nên AB=BD

kẻ AC cắt BD tại E

ta có SABCD=\(2\sqrt{3}\)=>\(\frac{1}{2}.BD.AC=2\sqrt{3}\Rightarrow\frac{1}{2}.AB.2AE=2\sqrt{3}\Rightarrow AB.AE=2\sqrt{3}\)

vì tam giác vuông ABE có B=60o

nên AE=\(\frac{\sqrt{3}}{2}.AB\) thế vào pt ta có 

AB.AB.\(\frac{\sqrt{3}}{2}\)=\(2\sqrt{3}\)

\(AB^2=2\sqrt{3}:\frac{\sqrt{3}}{2}\Rightarrow AB^2=4\)

nên AB =2 vì AB dương

10 tháng 9 2017

HÌNH CHỈ MANG TÍNH MINH HỌA

TA CÓ DIỆN TÍCH CỦA 4 NỬA ĐƯỜNG TRÒN CÓ ĐƯỜNG KÍNH LÀ CẠNH HÌNH VUÔNG LÀ

\(\left(\frac{\sqrt[]{6}-\sqrt{2}}{2\sqrt{2}+12\sqrt{5}}\right)^2.\pi\)

TA DỄ DÀNG NHẬN THẤY TỔNG DIỆN TÍCH CỦA 4 NỬA ĐƯỜNG TRÒN BẰNG TỔNG DIỆN TÍCH HÌNH VUÔNG CONNGJ VỚI DIỆN TÍCH HÌNH HOA THỊ

=> DIỆN TÍCH HOA THỊ = \(\left(\frac{\sqrt{6}-\sqrt{2}}{\sqrt{2}+6\sqrt{5}}\right)^2.\pi-\left(\frac{\sqrt{6}-\sqrt{2}}{\sqrt{2}+6\sqrt{5}}\right)^2=\left(\frac{\sqrt{6}-\sqrt{2}}{\sqrt{2}+6\sqrt{2}}\right)^2\left(\pi-1\right)\)

                                  = \(\left(\frac{8-2\sqrt{12}}{182+12\sqrt{10}}\right)\left(\pi-1\right)\)

DD
16 tháng 5 2021

Thể tích khối cầu là: \(\frac{4}{3}\pi R^3\)

Độ dài cạnh hình vuông là: \(R\sqrt{2}\).

Thể tích của khối trụ là: \(\left(\frac{R\sqrt{2}}{2}\right)^2\pi\left(R\sqrt{2}\right)=\frac{\pi R^3\sqrt{2}}{2}\)

Phần thể tích khối cầu nằm ngoài khối trụ là: \(\frac{\pi R^3}{6}\left(8-3\sqrt{2}\right)\).