K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2015


\(w=20\pi\Rightarrow f = 10 Hz \Rightarrow \lambda=\frac{v}{f}=\frac{30}{10}=3 \ \ cm.\)

\(d_{2M}-d_{1M}= 13.5-10.5 = 3= 1.3 \Rightarrow k =1\) . Tại M dao động cực đại có biên độ là 2a = 2.2 = 4 mm.

14 tháng 12 2017

sao biết dao động cực đại, và sao biên độ bằng 2a vậy bạn

O
ongtho
Giáo viên
23 tháng 9 2015

Bước sóng: \(\lambda=\frac{v}{f}=\frac{30}{10}=3\)(cm)

Hiệu khoảng cách từ M đến 2 nguồn là: 13,5 - 10,5 = 3cm \(=\lambda\)

Suy ra sóng do 2 nguồn truyền đến M cùng pha với nhau --> biên độ sóng: 2 + 2 = 4mm

11 tháng 12 2016

tsao biên độ sóng lại là 2 +2 vậy bạn?

 

26 tháng 5 2016

Do E và B biến thiên cùng pha nên, khi cảm ứng từ có độ lớn B0/2 thì điện trường E cũng có độ lớn E0/2.

Bài toán trở thành tính thời gian ngắn nhất để cường độ điện trường có độ lớn E0/2 đang tăng đến độ lớn E0/2.

E M N Eo Eo/2

Từ giản đồ véc tơ quay ta dễ dang tính được thời gian đó là t = T/3

Suy ra: \(t=\dfrac{5}{3}.10^{-7}\)s

V
violet
Giáo viên
17 tháng 5 2016

\(F_{đh}=-k.x\Rightarrow x=\dfrac{F}{k}\)

Bảo toàn cơ năng ta có: 

\(\dfrac{1}{2}mv_1^2+\dfrac{1}{2}k.x_1^2=\dfrac{1}{2}mv_2^2\) (lúc sau, lực đàn hồi = 0 thì x = 0 -> thế năng bằng 0)

\(\Rightarrow mv_1^2+k.(\dfrac{F_1}{k})^2=mv_2^2\)

Chọn C nhé bạn ok

\(\Rightarrow v_2^2 = v_1^2+\dfrac{F_1^2}{k.m}\)

23 tháng 7 2018

Mình nhớ công thức của lực đàn hồi là F=k(△l+x) mà bạn !

31 tháng 5 2017

Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)

19 tháng 11 2015

Trong mạch dao động thì i sớm pha hơn q là \(\frac{\pi}{2}.\)

17 tháng 11 2015

Mạch chỉ có điện trở thuần thì u cùng pha với i.

Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)

Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)

\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)

\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.

23 tháng 8 2016

Bạn áp dụng CT của dao động điều hòa:

\(A^2=x^2+\dfrac{v^2}{\omega^2}\)

Với \(x=\alpha.\ell\), li độ là độ dài cung của góc \(\alpha\) (tính theo rad)

\(\Rightarrow (\alpha_0.\ell)^2=(\alpha.\ell)^2+\dfrac{v^2.\ell}{g}\)

\(\Rightarrow \alpha_0^2=\alpha^2+\dfrac{v^2}{g\ell}\)

Chọn đáp án A.

23 tháng 8 2016

Cảm ơn bạn vui