Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi đơn vị bộ đội là x
Đơn vị bộ đội khi xếp thành 20;25;30 đều dư 15 nên x-15 chia hết cho 10;25;30 đều dư 15
Đầu tiên ta tính bội chung nhỏ nhất (20;25;30)
Ta có: 20=25mũ2.5 25=5mũ2 3=2.5.3
BCNN=2mũ2.5.3mũ2 = 300
x-15={ 300;600;900;...}
x có thể: {315;615;915;...}
Mà đơn vị bộ đội khi xếp thành hàng 41 vừa đủ nhỏ hơn 1000 nên chỉ có số 615 thỏa mãm điều kiện trên

Gọi tổng số người là A (0<A<1000)
Vì A chia 20; 25; 30 đều dư 15 nên A tận cùng là 5
Mà A chia hết cho 41, A<1000 nên A có thể là 205, 615
Ta thấy số 625 thỏa mãn.
Vậy đơn vị bộ đội đó có 625 người
Nếu gọi số người của đơn vị là a (a < 1000)
Vì khi xếp hàng 20; 25 hay 30 đều thừa 15 người nên:
(a - 15) ⋮⋮ 20; (a - 15) ⋮⋮ 25; (a - 15) ⋮⋮ 30
⇒⇒ (a - 15) ∈∈ BC(20; 25; 30)
(a - 15) ∈∈ BC(20; 25; 30) = {0; 300; 600; 900; 1200;...}
⇒⇒ a ∈∈ {15; 315; 615; 915;1215;...}
Vì a < 1000 mà khi xếp hàng 41 thì vừa hết nên a ⋮⋮ 41
Thử lần lượt các giá trị của a ta thấy: 615 ⋮⋮ 41
Vậy số người của đơn vị là 615 người

Gọi số bộ đội của đơn vị đó là x.
Ta có :
x : 10 dư 5 => x - 5 chia hết cho 10
x : 12 dư 5 => x - 5 chia hết cho 12
x : 15 dư 5 => x - 5 chia hết cho 15
Vì x + 5 chia hết cho 10;12;15 => x + 5 ∈∈BC(10;12;15)
Ta có :
10 = 2.5 12 = 22.3 15 = 3.5
=> BCNN(10;12;15) = 22.3.5=60
=> BC(10;12;15) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; ...}
Vì 300 <x <400 => x - 5 ∈∈{ 360 }
=> x = 360 + 5 = 365
Vậy số bộ đội của đơn vị đó là 365 người.

Gọi số bộ đội của đơn vị đó là x.
Ta có :
x : 10 dư 5 => x - 5 chia hết cho 10
x : 12 dư 5 => x - 5 chia hết cho 12
x : 15 dư 5 => x - 5 chia hết cho 15
Vì x + 5 chia hết cho 10;12;15 => x + 5 \(\in\)BC(10;12;15)
Ta có :
10 = 2.5 12 = 22.3 15 = 3.5
=> BCNN(10;12;15) = 22.3.5=60
=> BC(10;12;15) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; ...}
Vì 300 <x <400 => x - 5 \(\in\){ 360 }
=> x = 360 + 5 = 365
Vậy số bộ đội của đơn vị đó là 365 người.
P/s: ko chắc ạ...

Gọi aa là số người của đơn vị đó (a>0)(a>0)
Khi xếp hàng 20;25;3020;25;30 đều dư 1515; nhưng xếp hàng 4141 thì vừa đủ
⇒⇒ aa chia cho 20;25;3020;25;30 đều dư 1515 và aa chia hết cho 4141
⇒⇒ a−15a-15 chia hết cho 20;25;3020;25;30
⇒a−15⇒a-15 là BC(20;25;30)BC(20;25;30)
20=22.520=22.5
25=5225=52
30=2.3.530=2.3.5
⇒BCNN(20;25;30)=22.52.3=300⇒BCNN(20;25;30)=22.52.3=300
⇒a−15={0;300;600;1200;...}⇒a-15={0;300;600;1200;...}
⇒a={15;315;615;1215;...}⇒a={15;315;615;1215;...}
mà a<1000a<1000 nên a=615a=615 (chia hết cho 4141)
Vậy có 615 người.

Lời giải:
Gọi số người trong đơn vị là $a$. Theo đề thì:
$a-15\vdots 20,25,30$
$\Rightarrow a-15=BC(20,25,30)$
$\Rightarrow a-15\vdots BCNN(20,25,30)$
$\Rightarrow a-15\vdots 300$
$\Rightarrow a-15\in \left\{300; 600; 900; 1200;...\right\}$
$\Rightarrow a\in \left\{315; 615; 915; 1215;...\right\}$
Mà $a\vdots 41$ nên $a=615$