K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

Giải thích: Đáp án A

Từ đồ thị ta thấy:

Lực đàn hồi tại thời điểm ban đầu:

Lực đàn hồi tại vị trí biên dương:  

Lực đàn hồi tại vị trí biên âm: 

Gọi  là thời gian từ t = 0 đến t = 2/15s

Ta có:

Theo đề bài: 

=> Thời gian lò xo nén là 0,446T

=> Thời gian lò xo giãn là 0,554T

Tỉ số thời gian lò xo giãn và lò xo nén trong một chu kì là 1,24

Chọn A

24 tháng 7 2016

Ta có:  \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)

\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)

KQ = 3,2 cm

1 tháng 8 2016

Hỏi đáp Vật lý

1 tháng 8 2016

ban đầu T=0,4s => omega = 5p i=> deta lo =4 cm

 Tại t=0 thì vật qua vtcb theo chiều (+) nên vật đi từ x=0 ->x=A->x=0->x=deta lo(vị trí lò xo có độ lớn min)
=> t= T/4+T/4+T/12=7T/12=7/30s
22 tháng 6 2019

Cái này hình như bạn viết nhầm đơn vị của g phải là m/s2

Khi lò xo có chiều dài l=28 thì vận tốc bằng 0=> vật ở vị trí biên âm

△l=|△l0-A|=2cm

Fd=k|△l|=2N

=>k=100N/m

△l0=\(\dfrac{m.g}{k}\)=0,02(m)=2cm

=>A=4cm

W=1/2.k.A2=0,08j

15 tháng 9 2021

Sao tìm được A vậy 

1 tháng 6 2016
 

Độ giãn của lò xo tại VTCB: \(\Delta l_0=\frac{9}{\omega^2}=2cm\)

Lực đàn hồi có độ lớn 1,5 N
\(F=k.\left(\Delta l\pm x\right)\Leftrightarrow1,5=50.\left(0,02\pm x\right)\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1cm\\x=-1cm\end{array}\right.\)

Khoảng thời gian ngắn nhất vật đi qua hai vị trí mà lực đàn hồi F = 1,5 N là : 
\(t=\frac{T}{12}+\frac{T}{12}=\frac{\pi}{30\sqrt{5}}=s\)

Đáp án C

24 tháng 8 2016

\(T=2\pi\sqrt{\frac{\Delta l_0}{9}}=0,4s\)

\(\Rightarrow\Delta l_0=4=\frac{A\sqrt{2}}{2}\)

Thời gian lò xo không giãn là \(t=2t-\frac{A\sqrt{2}}{2}\Rightarrow-A=\frac{T}{4}=0,10\left(s\right)\)

Vậy D đúng

24 tháng 8 2016

Chọn chiều dương hướng xuống dọc theo trục lò xo
Tại vị trí cân bằng ta có: mg = k\Delta l \Rightarrow \frac{k}{m}= \frac{g}{\Delta l}\Rightarrow T = 2 \pi \sqrt{\frac{\Delta l}{g}} = 0,4 s
Trong một chu kì, thời gian lò xo không dãn là thới gian vecto quay từ vị trí:
- \frac{A\sqrt{2}}{2 }\Rightarrow - A \Rightarrow - \frac{A\sqrt{2}}{2}
\Rightarrow t = \frac{T}{8} + \frac{T}{8} = \frac{T}{4} = 0,1 s

28 tháng 7 2016

Tần số góc: \(\omega=\sqrt{\frac{K}{m}}=10\pi\left(rad\text{/}s\right)\)
Biên độ dao động của vật \(A=\sqrt{x^2+\left(\frac{v}{w}\right)^2}=6\left(cm\right)\)
Lò xo có độ nén cực đại tại biên âm:
\(\Rightarrow\)  Góc quét \(=\pi\text{/}3+\pi=\omega t\Rightarrow t=2\text{/}15\left(s\right)\)

chọn B

23 tháng 8 2016

Ta có: \Delta l = \frac{mg}{k}= 10 cm
Lực đàn hồi:
 F_{max} = k(\Delta l + A) = 1,5 N
F_{min} = k(\Delta l - A) = 0,5 N

15 tháng 7 2016

Chọn trục toạ độ có gốc ở VTCB, chiều dương hướng sang phải.

Phương trình dao động tổng quát là: \(x=A\cos(\omega t+\varphi)\)

Theo thứ tự, ta lần lượt tìm \(\omega;A;\varphi\)

\(\omega=\sqrt{\dfrac{k}{m}}=20\sqrt 2(rad/s)\)

+ Biên độ A: \(A^2=x^2+\dfrac{v^2}{\omega^2}=3^2+\dfrac{(80\sqrt 2)^2}{(20\sqrt 2)^2}\)

\(\Rightarrow A = 5cm\)

+ Ban đầu ta có \(x_0=3cm\)\(v_0=-80\sqrt 2\) (cm/s) (do ta đẩy quả cầu về VTCB ngược chiều dương trục toạ độ)

\(\cos\varphi=\dfrac{x_0}{A}=\dfrac{3}{5}\); có \(v_0<0 \) nên \(\varphi > 0\)

\(\Rightarrow \varphi \approx0,3\pi(rad)\)

Vậy PT dao động: \(x=5\cos(20\sqrt 2+0,3\pi)(cm)\)

24 tháng 7 2016

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)