Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Sử dụng đường tròn lượng giác
Cách giải:
Theo đề bài ta có
Biểu diễn trên đường tròn lượng giác ta có :
Từ đường tròn lượng giác ta thấy phần gạch đỏ là phần thỏa mãn yên cầu của đề bài => x0 = A/2 = 2,5 cm
Do đó ta có :
=> Tần số f = ω / 2 π => Chọn A
Để tìm tần số dao động của con lắc, ta có công thức:
f = 1/T
Trong đó: f là tần số dao động (Hz) T là chu kì dao động (s)
Theo đề bài, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s là T/3. Độ lớn gia tốc của con lắc được tính bằng công thức:
a = -ω²x
Trong đó: a là gia tốc (cm/s²) ω là góc tốc độ góc của con lắc (rad/s) x là biên độ dao động (cm)
Ta có thể tính được ω bằng công thức:
ω = 2πf
Thay vào công thức gia tốc, ta có:
a = -(2πf)²x = -4π²f²x
Đề bài cho biết gia tốc không vượt quá 100 cm/s, nên ta có:
100 ≥ 4π²f²x
Với x = 5 cm, ta có:
100 ≥ 4π²f²(5)
Simplifying the equation:
5 ≥ π²f²
Từ đó ta có:
f² ≤ 5/π²
f ≤ √(5/π²)
f ≤ √(5/π²) ≈ 0.798 Hz
Vậy tần số dao động của con lắc là khoảng 0.798 Hz.
Chọn đáp án A
? Lời giải:
+ Lực đàn hồi đổi chiều tại vị trí lò xo không biến dạng.
+ Lực hồi phục (kéo về) đổi chiều tại vị trí cân bằng
+ Thời gian mà lực đàn hồi ngược chiều lực hồi phục khi vật đi từ O đến M (M là vị trí lò xo không biến dạng) và ngược lại
Chọn đáp án A
? Lời giải:
+ Lực đàn hồi đổi chiều tại vị trí lò xo không biến dạng.
+ Lực hồi phục (kéo về) đổi chiều tại vị trí cân bằng
f = 1 2 π g Δ l ⇒ Δ l = 1 c m A = Δ l 2 + v 2 ω 2 = 2 c m ⇒ Δ l = A 2
+ Thời gian mà lực đàn hồi ngược chiều lực hồi phục khi vật đi từ O đến M (M là vị trí lò xo không biến dạng) và ngược lại
Δ t = 2. T 12 = T 6 = 1 30 s
Độ lớn của gia tốc không vượt quá 100 c m / s 2 là một phần 3 chu kì → 1 2 ω 2 A = 100 .
→ ω = 2 π rad / s → f = 1 Hz
Đáp án A