Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp: Sử dụng lí thuyết về con lắc lò xo dao động điều hòa theo phương thẳng đứng
Cách giải:
+ Tần số góc ω = 2 π T
+ Độ giãn của lò xo ở VTCB:
+ Do ∆ l 0 < A nên lực đàn hồi của lò xo có độ lớn cực tiểu bằng 0 tại vị trí lò xo không biến dạng
=> Thời gian vật đi từ VTCB (x = 0) đến VT lò xo không biến dạng (x = -4 cm) là t = T/12 = 1/30 s
=> Chọn B
Đáp án B
+ Độ biến dạng của lò xo tại vị trí cân bằng
+ Biểu diễn dao động của con lắc tương ứng trên đường tròn.
Lực đàn hồi của lò xo có độ lớn cực tiểu lần đầu tiên khi vật đi qua vị trí lò xo không biến dạng lần đầu, tương ứng với
→ Từ hình vẽ, ta có
Thời gian quả cầu đi từ vị trí cao nhất (x = -A) đến vị trí thấp nhất (x = A) chính là \(\frac{T}{2} = 0,2 => T = 0,4s.\)
Lực đàn hồi của lò xo khi lò xo ở vị trí thấp nhất chính là \(F_{dhmax} = k(A+\Delta l)\)
\(\frac{F_{max}}{P} = \frac{k(A+\Delta l)}{mg} = \frac{kA+k\Delta l }{mg } = 1+\frac{kA}{mg} =\frac{7}{4}\) (do \(k\Delta l = mg\))
=> \(A = \frac{3g}{4}\frac{m}{k} = \frac{3g}{4}.\frac{T^2}{4\pi^2} =0,03m = 3cm.\)