Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tần số dao động cỉa con lắc đơn là:
\(f=\frac{n}{T}\Leftrightarrow f=\frac{500}{100}=5\left(Hz\right)\)
=> B đúng

Vận tốc cực đại: \(v_{max}=\sqrt{\dfrac{2W_{đmax}}{m}}=\sqrt{\dfrac{2.0,1}{0,2}}=1m/s\)
Khi \(W_{đ1}=0,025J\) \(\Rightarrow v_{1}=\sqrt{\dfrac{2W_{đ1}}{m}}=\sqrt{\dfrac{2.0,025}{0,2}}=0,5m/s\)
Khi \(W_{đ2}=0,75J\) \(\Rightarrow v_{1}=\sqrt{\dfrac{2W_{đ1}}{m}}=\sqrt{\dfrac{2.0,075}{0,2}}=0,5\sqrt 3m/s\)
Vì vận tốc biến thiên điều hoà theo thời gian, nên ta biểu diễn bằng véc tơ quay:
v O 1 0,5 0,5√3 30 0
Từ giản đồ véc tơ ta suy ra được: \(\Delta t=\dfrac{30}{360}T=\dfrac{\pi}{20}\)
\(\Rightarrow T =\dfrac{3\pi}{5}s\)
\(\Rightarrow \omega = \dfrac{2\pi}{T}=\dfrac{10}{3}\) (rad/s)
Biên độ: \(A=\dfrac{v_{max}}{\omega}=0,3m = 30cm\)

Theo bài ta có:
Chu kì lúc ban đầu:
\(T=2\pi\sqrt{\frac{l}{g}}\)
Lúc sau:
\(T'=\left(T-0,4\right)=2\pi\sqrt{\frac{l-0,44}{g}}\)
Giải ra:
\(T-T'=0,4;T+T'=\frac{0,44T^2}{0,4l}=4,4\)
Ta có: T = 2,4 => T' = 2 (s)

Vật thực hiện 10 dao động mất 20s:
\(T=\frac{t}{n}=2s\Rightarrow g=4\pi^2\frac{l}{T^2}=9,86m/s^2\)
Đáp án C

Đề bài thế này thì tổng hợp gần hết các dạng cơ bản của dao động điều hòa luôn r còn đâu :)
1/ \(v=-\omega A\sin\frac{\pi}{3}=-2\pi.5.\frac{\sqrt{3}}{2}=-5\pi\sqrt{3}\left(cm/s\right)\)
Ủa phương trình li độ x là như nào vậy? Như này ạ:\(x=5\cos\left(2\pi t-\frac{2\pi}{3}\right)?\)
2/ Câu này chả rõ ràng gì, ua li độ x=2,5 căn 3 theo chiều dương hay âm thì mới xác định được vận tốc dương hay âm chứ :(
\(A^2=x^2+\frac{v^2}{\omega^2}\Rightarrow v=\omega\sqrt{A^2-x^2}=...\left(cm/s\right)\)
3/ \(t=0\Rightarrow\left\{{}\begin{matrix}x=5\cos\frac{2\pi}{3}=-2,5\left(cm\right)\\v=-\omega A\sin\frac{2\pi}{3}< 0\end{matrix}\right.\) => Vật chuyển động theo chiều âm
Thời gian vật đi từ VTCB đến li độ \(x=-2,5\sqrt{3}\) là:
\(\Delta t_1=\frac{1}{\omega}.arc\sin\left(\frac{2,5\sqrt{3}}{5}\right)=\frac{1}{2\pi}.\frac{\pi}{3}=\frac{1}{6}\left(s\right)\)
Thời gian vật đi từ VTCB đến li độ x=-2,5 là:
\(\Delta t_2=\frac{1}{\omega}arc\sin\left(\frac{2,5}{5}\right)=\frac{1}{2\pi}.\frac{\pi}{6}=\frac{1}{12}\left(s\right)\)
\(\Rightarrow\sum t=\Delta t_1-\Delta t_2=\frac{1}{6}-\frac{1}{12}=\frac{1}{12}\left(s\right)\)
4/\(\Delta t_1=2019.T=2019.1=2019\left(s\right)\)
\(\Delta t_2=\frac{1}{\omega}.arc\cos\left(\frac{2,5}{5}\right)=\frac{1}{2\pi}.\frac{\pi}{3}=\frac{1}{6}\left(s\right)\)
\(\Delta t_3=\frac{T}{2}-\frac{1}{2\pi}arc\cos\left(\frac{2}{5}\right)=\frac{1}{2}-\frac{1}{2\pi}\frac{11}{30}\pi=\frac{19}{60}\left(s\right)\)
\(\sum t=\Delta t_1+\Delta t_2+\Delta t_3=...\)
5/ \(x=5\cos\left(2.1,125\pi-\frac{2\pi}{3}\right)\approx1,3\left(cm\right)\)
6/ \(\frac{\Delta t_2}{T}=1,25\Rightarrow\Delta t_2=T+\Delta t\Rightarrow\sum S=S_1+S_2=4A+S_2\)
\(t_1=0\Rightarrow\left\{{}\begin{matrix}x_1=-2,5\\v_1< 0\end{matrix}\right.;t_2=1,25\Rightarrow\left\{{}\begin{matrix}x_2=\frac{5\sqrt{3}}{2}\\v>0\end{matrix}\right.\)
\(\Rightarrow S_2=\frac{A}{2}+A+\frac{5\sqrt{3}}{2}=...\Rightarrow\sum S=...\)
7/ \(x=2,5\Rightarrow25=2,5^2+\frac{v^2}{4\pi^2}\Rightarrow v=2\pi\sqrt{25-2,5^2}=\pm5\pi\sqrt{3}\left(cm/s\right)\Rightarrow W_d=\frac{1}{2}mv^2=....\left(J\right)\)
8/ \(v_{tb}=\frac{S_{tb}}{t}\) Stb là uãng đường đi được trong 2,5s
Lười úa :( Tìm uãng đường đi trong 2,5s như câu 6 thui, chị tự làm nhé, có gì ko hiểu hỏi em

Sau đây là keys
1/ \(A.T=2\pi\sqrt{\dfrac{m}{k}}\)
2/ \(D.\) Cộng hưởng cơ
3/ \(\varphi_1-\varphi_2=\pi+2k\pi=\left(2k+1\right)\pi\Rightarrow A.\left(2k+1\right)\pi\)
4/ \(\omega=2\pi f\Rightarrow f=\dfrac{\omega}{2\pi}=\dfrac{\pi}{2\pi}=\dfrac{1}{2}\left(Hz\right)\Rightarrow A.0,5Hz\)
5/ \(A.\) Cơ năng, biên độ, tần số
6/ Câu này vẽ đường tròn ra là xong thôi
\(\varphi=arc\cos\left(\dfrac{3}{6}\right)+\dfrac{\pi}{2}+arc\sin\left(\dfrac{3\sqrt{3}}{6}\right)=\dfrac{\pi}{3}+\dfrac{\pi}{2}+\dfrac{\pi}{3}=\dfrac{7\pi}{6}\left(rad\right)\)
\(\Rightarrow t=\dfrac{\varphi}{\omega}=\dfrac{7\pi}{6.4\pi}=\dfrac{7}{24}\left(s\right)\Rightarrow A.\dfrac{7}{24}\left(s\right)\)
7/ \(W_t=\dfrac{1}{2}kx^2=\dfrac{1}{2}k\dfrac{4}{9}A^2\Rightarrow\dfrac{W_t}{W}=\dfrac{\dfrac{2}{9}kA^2}{\dfrac{1}{2}kA^2}=\dfrac{4}{9}\Leftrightarrow W_t=\dfrac{4}{9}W\left(J\right)\)
\(\Rightarrow W_d=W-W_t=W-\dfrac{4}{9}W=\dfrac{5}{9}W\left(J\right)\Rightarrow B.\dfrac{5}{9}W\left(J\right)\)
Câu này em nghĩ nên cho thêm đơn vị Jun ạ!
8/ \(T-mg\cos\alpha=m.a_{ht}=\dfrac{mv^2}{l}\)
\(\Leftrightarrow T=mg\cos\alpha+2mg\left(\cos\alpha-\cos\alpha_0\right)\)
\(\Leftrightarrow T=mg\left(3\cos\alpha-2\cos\alpha_0\right)\)
Lực căng cực đại khi vật ở vị trí thấp nhất
\(\Rightarrow\alpha=0\Rightarrow T_{max}=mg\left(3.1-2\cos60^0\right)=2mg\left(N\right)\)
Lực căng cực tiểu khi vật ở vị trí ban đầu
\(\Rightarrow\alpha=60^0\Rightarrow T_{min}=mg\left(3.\dfrac{1}{2}-2.\dfrac{1}{2}\right)=0,5mg\left(N\right)\)
\(\Rightarrow\dfrac{T_{max}}{T_{min}}=\dfrac{2}{0,5}=4\Rightarrow D.4\)

Tại VTCB : đental = 2.5cm
biên độ : A=(30 - 20)/2 = 5cm
vậy thời gian cần tính là t = T/4 + T/12
0k???
Bài 2 hỏi độ lớn của vật là cái j hả??????
Bai 3. oomega = 20rad/s
tại VTCB denta l = g/omega^2 = 2,5cm
A = 25 - 20 - 2,5 = 2,5cm
li độ tại vị trí lò xo có chiều dài 24cm x=24-22,5 = 1,5cm
Áp dụng CT độc lập với thời gian ta tính được v = 40cm/s
từ đó suy ra động năng thui