Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, theo bài ra
nửa quãng đường đầu xe thứ nhất đi trong \(t1=\dfrac{\dfrac{1}{2}S}{v1}=\dfrac{\dfrac{1}{2}S}{40}=\dfrac{S}{80}h\)
nửa quãng đường sau xe thứ nhất đi trong \(t2=\dfrac{\dfrac{1}{2}S}{v2}=\dfrac{\dfrac{1}{2}S}{60}=\dfrac{S}{120}\left(h\right)\)
\(=>Vtb1=\dfrac{S}{t1+t2}=\dfrac{S}{\dfrac{S}{80}+\dfrac{S}{120}}=\dfrac{S}{\dfrac{200S}{9600}}=\dfrac{9600}{200}=48km/h\)
* đối với xe 2
quãng đường xe 2 đi trong nửa tgian đầu:\(S1=\dfrac{1}{2}t.40=20t\left(km\right)\)
quãng đường xe 2 đi trong nửa tgian sau: \(S2=\dfrac{1}{2}t.60=30t\left(km\right)\)
\(=>S=vtb2.t\)\(=30t+20t=50t\)
\(=>vtb2=50km/h\)
b, do \(vtb1< vtb2\left(48< 50\right)\) do đó xe thứ 2 về B trước xe thứ nhất
đổi \(20s=\dfrac{1}{180}h\)
theo bài ra xe thứ nhất về đích sau xe thứ 2 là 20s\(=\dfrac{1}{180}h\)
\(=>t3-t4=\dfrac{1}{180}\)
\(< =>\dfrac{S}{vtb1}-\dfrac{S}{vtb2}=\dfrac{1}{180}< =>\dfrac{S}{48}-\dfrac{S}{50}=\dfrac{1}{180}\)
\(< =>\dfrac{2S}{2400}=\dfrac{1}{180}=>360S=2400=>S=\dfrac{2400}{360}=\dfrac{20}{3}km\)
mÌNH MỎI TAY QUÁ
Lấy gốc tọa độ tại AA chiều dương là chiều từ AA đến BB. Gốc thời gian là lúc 7h7h
Phương trình chuyển động của :
Xe đi từ A:A: xA=36t(km−h)xA=36t(km−h)
Xe đi từ B:xB=96−28t(km−h)B:xB=96−28t(km−h)
Hai xe gặp nhau khi :xA=xB:xA=xB
→36t=96−28t→36t=96−28t
⇒t=1,5(h)⇒t=1,5(h)
xA=36t=36.1,5=54(km)xA=36t=36.1,5=54(km)
Hai xe gặp nhau lúc 8h30′8h30′. Nơi gặp nhau cách AA 54km54km
TH1:TH1: Hai xe cách nhau 24km24km trước khi hai xe gặp nhau
Hai xe cách nhau 24km
⇔⇔ xB−xA=24xB−xA=24
⇔⇔ 96−28t′−36t′=2496−28t′−36t′=24
⇔t′=1,125h⇔t′=1,125h
Vậy lúc 8h7phút30giây hai xe cách nhau 24km
TH2:TH2: Hai xe cách nhau 24k sau khi gặp nhau
Hai xe cách nhau 24km
⇔xA−xB=24⇔xA−xB=24
⇔36t′′−96+28t′′=24⇔36t″−96+28t″=24
⇔t′′=1,875(h)⇔t″=1,875(h)
Vậy lúc 8h52phút30giây hai xe cách nhau 24km
bài 2:
ta có:
thời gian người đó đi trên nửa quãng đường đầu là:
t1=S1/v1=S/2v1=S/24
thời gian người đó đi hết nửa đoạn quãng đường cuối là:
t2=S2/v2=S2/v2=S/40
vận tốc trung bình của người đó là:
vtb=S/t1+t2=S/(S/40+S/24)=S/S(140+124)=1/(1/24+1/40)
⇒vtb=15⇒vtb=15 km/h
bài 3:
thời gian đi nửa quãng đầu t1=(1/2) S.1/25=S/50
nửa quãng sau (1/2) t2.18+(1/2) t2.12=(1/2) S⇔t2=S/30
vận tốc trung bình vtb=S/(t1+t2)=S/S.(1/50+1/30)=1/(1/50+1/30)=18,75(km/h)
HT
a,
\(=>vtb1=\dfrac{S}{\dfrac{\dfrac{1}{2}S}{24}+\dfrac{\dfrac{1}{2}S}{16}}=\dfrac{S}{\dfrac{S}{48}+\dfrac{S}{32}}=\dfrac{S}{\dfrac{80S}{1536}}=\dfrac{1536}{80}=19,2km/h\)
\(=>Vtb2.t=24.\dfrac{1}{2}t+16.\dfrac{1}{2}t=20t=>Vtb2=20km/h\)
b,\(vtb2>vtb1\)
=>VĐV thứ 2 chạy tới đích trước
\(=>\dfrac{AB}{vtb1}-\dfrac{AB}{vtb2}=\dfrac{15}{60}=>\dfrac{AB}{19,2}-\dfrac{AB}{20}=\dfrac{1}{4}=>AB=120km\)
gọi s là quãng đường AB
s1,s2,s3 lần lượt là từng quãng đường mà xe di chuyển:
s1 = \(\frac{1}{3}s\)
=> s2 + s3 = \(\frac{2}{3}s\)
Thời gian xe di chuyển trong \(\frac{1}{3}\) quãng đường là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{3.40}=\frac{s}{120}\)
Gọi t' là thời gian đi ở quãng đường (\(\frac{2}{3}s\)) còn lại:
Trong \(\frac{2}{3}\) thời gian đầu, xe đi được quãng đường là
s2 = \(\frac{2}{3}t'.v_2=\frac{2}{3}.t'.45=30t'\)
Quãng đường xe đi được trong thời gian còn lại là:
s3=\(\frac{1}{3}t'.v_3=\frac{1}{3}t'.30=10t'\)
Mặt khác ta có
s2 + s3 = \(\frac{2}{3}s\)
=> 30t' + 10t' = \(\frac{2}{3}s\)
=> 40t'=\(\frac{2}{3}s\)
=> t'=\(\frac{s}{60}\)
Vận tốc trung bình của xe là:
\(v_{tb}=\frac{s}{t+t'}=\frac{s}{\frac{s}{120}+\frac{s}{60}}=\frac{1}{\frac{1}{120}+\frac{1}{60}}=40\)(km/h)
Một xe đi từ A về B, trong nửa quãng đương đầu, xe chuyển động với vận tốc v1= 40 km/h. Trên nửa quãng đường sau xe chuyển động thành 2 giai đoạn: nửa thời gian đầu vận tốc v2 = 45 km/h, thời gian còn lại đi với vận tốc v3 = 30 km/h. Tính vận tốc trung bình của xe trên cả quãng đường AB.
Đề phải như này mới đúng
a đối với xe thứ nhất:, \(=>t1=\dfrac{\dfrac{1}{2}S}{v1}=\dfrac{\dfrac{1}{2}S}{40}=\dfrac{S}{80}\left(h\right)\)
\(=>t2=\dfrac{\dfrac{1}{2}S}{v2}=\dfrac{\dfrac{1}{2}S}{60}=\dfrac{S}{120}\left(h\right)\)
\(=>vtb1=\dfrac{\dfrac{1}{2}S+\dfrac{1}{2}S}{t1+t2}=\dfrac{S}{\dfrac{S}{80}+\dfrac{S}{120}}=\dfrac{S}{\dfrac{200S}{9600}}=48km/h\)
vậy vận tốc trung bình xe thứ nhất là 48km/h
* với xe thứ hai \(=>S1=\dfrac{1}{2}t.v1=\dfrac{1}{2}t.40=20t\left(km\right)\)
\(=>S2=\dfrac{1}{2}t.v2=\dfrac{1}{2}t.60=30t\left(km\right)\)
\(=>S1+S2=S\) \(=vtb2.t\)
\(=>50t=vtb2.t=>vtb2=\dfrac{50t}{t}=50km/h\)
b, vì \(vtb1< vtb2\left(48< 50\right)\)
nên xe thứ hai đến B trước xe thứ nhất
c, khi xe 2 tới Bthì xe nhất còn cách B
\(240-S3=240-[240-\left(\dfrac{240}{80}+\dfrac{240}{240}.60\right)]=63km\)
gọi t là thời gian xe di chuyển đến đền hùng
t1 là thời gian đi với vận tốc v1 = 90(km/h)
t2 là thời gian xe đi với vận tốc v2 = 60 (km/h)
theo đề ta có t1 = t2 =\(\frac{1}{2}t\)
Trong nửa thời gian đi thì xe đi được quãng đường là:
s1 = v1 . t1 = 90.\(\frac{1}{2}t=45t\left(km\right)\)
Trong thời gian còn lại xe đi được quãng đường là:
s2 = v2.t2 =60.\(\frac{1}{2}t=30t\left(km\right)\)
Vận tốc trung bình xe đi trên cả quãng đường là:
vtb = \(\frac{s_1+s_2}{t_1+t_2}=\frac{45t+30t}{t}=75\)(km/h)
Vậy vận tốc của xe là 75(km/h)