Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu diễn dao động bằng véc tơ quay:
x 4 -4 -2 M N O 30°
Ban đầu, véc tơ quay xuất phát ở M, để dao động đi được 6cm thì véc tơ quay sẽ quay đến N.
Trên hình vẽ ta tìm được góc quay là: \(\alpha=90+30=120^0\)
Thời gian: \(t=\dfrac{120}{360}T=\dfrac{\pi}{30}\)
\(\Rightarrow T=\dfrac{\pi}{10} (s)\)
\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)
Cơ năng của vật: \(W=\dfrac{1}{2}.m.\omega^2.A^2=\dfrac{1}{2}.1.20^2.0,04^2=0,32(J)\)
\(20-10\sqrt{2\left(A-\frac{A}{\sqrt{2}}\right)}\Rightarrow\frac{T}{4}=1\Rightarrow T=4\left(s\right)\)
\(S=S_{2012}-S_{2011}=A\sqrt{2}=10\sqrt{2}\) (cm)
Không có đáp án đó nhưng bạn giải thích cách làm của bạn cho mình với.
Chu kì: T= 1s.
Từ t = 0 đến t = 2,5 s vật đi trong thời gian 2,5 T.
Quãng đường vật đi: S = 2,5.4A = 2,5.4.10 = 100cm.
Chu kì: \(T=2\pi/\omega=0,4s\)
Ta có: \(t=2s=5.T\)
Trong mỗi chu kì, quãng đường đi được là 4A
Vậy trong 5 chu kì quãng đường đi được là: \(5.4A=20A=20.4=80(cm)\)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
+ \(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)
+ A = 4cm.
+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)
Biểu diễn trạng thái dao động của vật bằng véc tơ quay, ta có:
> x O 4 2 -4 M N 30 0
Ban đầu, véc tơ quay xuất phát ở M, sau khi vật đi được 2cm thì véc tơ quay đến N.
Góc quay: \(\alpha = 30^0\)
Suy ra thời gian: \(t=\dfrac{30}{360}T=\dfrac{1}{12}T=\dfrac{\pi}{30}\)
\(\Rightarrow T = \dfrac{2\pi}{5}\)
\(\Rightarrow \omega = \dfrac{2\pi}{T}=5(rad/s)\)
Độ cứng của lò xo: \(k=m.\omega^2=1,6.5^2=40(N/m)\)
Chu kì dao động \(T=\dfrac{2\pi}{\omega}=0,1s\)
Thời gian \(t=0,05s = \dfrac{T}{2}\)
Trong 1/2 chu kì, quãng đường vật đi được luôn là 2A, bằng: \(2.4=8cm\)