K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

Gọi A là biến cố : “ Sinh con gái ở lần thứ nhất”, ta có:

P(A) = 1 – 0,51 = 0,49 .

Gọi B là biến cố: “ Sinh con trai ở lần thứ hai”, ta có: P(B) =0,51

Gọi C là biến cố: “Sinh con gái ở lần thứ nhất và sinh con trai ở lần thứ hai”

Ta có: C = AB, mà A, B độc lập nên ta có:

P(C) = P(AB)= P(A). P(B) = 0,49. 0,51=  0,2499.

Chọn đáp án C.

31 tháng 7 2019

Gọi A là biến cố ba lần sinh có ít nhất 1 con trai, suy ra A ¯  là xác suất 3 lần sinh toàn con gái.

Gọi B 1 là biến cố lần thứ i sinh con gái ( i =1; 2; 3)

Suy ra P ( B 1 )   =   P ( B 2 ) =   P ( B 3 ) = 1- 0,51= 0,49

Ta có: A ¯ =    B 1 . B 2 . B 3  mà B 1 ;   B 2 ;   B 3 độc  lập với nhau nên:

P ( A ¯ ) =   P (   B 1 ) . P ( B 2 ) . P ( B 3 ) = 0 , 49 3

⇒ P ( A ) = 1 −     P ( A ¯ ) = 1 −    0 , 49 3 ≈    0 , 88

Chọn đáp án A

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

1. Xác suất để gia đình đó có 3 con trai = xác suất để trong 4 người con còn lại có 1 con trai và 3 con gái và bằng:

$0,5.0,5.0,5.0,5=0,0625$

2. Nhà đó đã có sẵn 2 con trai

Xác suất để nhà đó chỉ có 2 con trai (4 còn lại là nữ):  $0,5.0,5.0,5.0,5=0,0625$

Xác xuất để nhà đó có 3 con trai: $0,0625$ (đã cm ở 1) 

Xác suất để nhà đó có tối đa 3 con trai: $0,0625.2=0,125$

9 tháng 12 2017

Đáp án D

Để thi đậu thí sinh có thể vượt qua kì thi ở một trong 3 vòng.

Xác suất thí sinh đậu vòng 1 là p1 = 0,9

Xác suất thí sinh đậu vòng 2 là p2 = 0,1.0,7 = 0,07

Xác suất thí sinh đậu vòng 3 là p3 = 0,1.0,3.0,3 = 0,009

Vậy xác suất thí sinh đậu kì thi là: p = p1 + p2 + p3 = 0,9 + 0,07 + 0,009 = 0,979

21 tháng 10 2019

Chọn A

Lời giải. Gọi số học sinh nữ trong nhóm A là  x ( x ∈ ℕ * )

Gọi số học sinh nam trong nhóm B là  y ( y ∈ ℕ * )

Suy ra số học sinh nữ trong nhóm B là

25 - 9 - x - y = 16 - x - y

Khi đó, nhóm A có: 9 nam, x nữ và nhóm B có

y nam, 16 - x - y nữ

Xác suất để chọn được hai học sinh nam là

Mặt khác x + y < 16

Vậy xác suất để chọn đươc hai học sinh nữ là

C 1 1 . C 6 1 C 10 1 . C 15 1 = 0 , 04

2 tháng 1 2020

Đáp án B

Gọi số học sinh nữ trong nhóm A là x  ( x ∈ ℕ * )

Gọi số học sinh nam trong nhóm B là y  ( y ∈ ℕ * ) .

=> Số học sinh nữ trong nhóm B là 25 – 9 – x = 16 – x – y => x + y < 16

Khi đó, Nhóm A: 9 nam, x nữ và nhóm B: y nam, 16 – x – y nữ.

Xác suất để chọn được hai học sinh nam là

C 9 1 . C y 1 C 9 + x 1 . C 25 - 9 - x 1 = 0 , 54

⇔ 9 y ( 9 + x ) ( 16 - x ) = 27 50 .

⇒ y = 30 50 ( 9 + x ) ( 16 - x ) ⇒ x < 16 .

Vì  y ∈ ℕ * ⇒ 3 50 ( 9 + x ) ( 16 - x ) ∈ N * .

=> (x, y) = {(1; 9), (6; 9), (11; 6)}.

Mặt khác x + y < 16

( Khi chia nhóm thì A,B có vai trò như nhau nên có 2 cặp thỏa mãn )

Vậy xác suất để chọn đươc hai học sinh nữ là 0,04.

Chọn B

27 tháng 2 2023

  `n(\Omega)=6! =720`

`@TH1:` H/s lớp `C` ngồi đầu tiên hoặc cuối cùng.

  `=>` Có `2.1.A_3 ^1 .4! =144` cách xếp h/s lớp `C` không ngồi cạnh lớp `B`.

`@TH2:` H/s lớp `C` không ngồi đầu cũng không ngồi cuối.

  `=>` Có `4.A_3 ^2 .3! =144` cách xếp h/s lớp `C` không ngồi cạnh lớp `B`.

Gọi `A:`" H/s lớp `C` không ngồi cạnh h/s lớp `B`"

   `=>n(A)=144.2=288`

`=>P(A)=288/720=2/5`

    `->bb D`