Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Thể tích của khối nón là V n = 1 3 π r 2 h 1 và độ dài đường sinh là l = r 2 + h 2
Thể tích của khối trụ là V t = π r 2 h 2 = 1 3 π r 2 h
Vậy thể tích cái nắp là V = V n + V t = 2 3 π r 2 h
Mặt khác l =1,25
⇒ r 2 + h 2 = 25 4 ⇔ r 2 = 25 4 − h 2
khi đó:
V = 2 3 π h 25 4 − h 2 ≤ 2 π 3 . 125 12 3
Ta có:
V 2 = 4 9 π 2 h 2 25 4 − h 2 2 ≤ 2 9 π 2 . 25 4 − h 2 . 25 4 − h 2 2 9 π 2 . 25 4 − h 2 . 25 4 − h 2 ≤ 2 π 2 9 . 25 4 + 25 4 3 3
Dấu bằng xảy ra khi:
2 h 2 = 25 4 − h 2 ⇔ h 2 = 25 12 ⇒ h = 5 2 3
Dấu “=” xảy ra khi:
2 h 2 = 25 4 − h 2 ⇔ h 2 = 25 12 ⇒ h = 5 2 3 ⇒ r = 25 4 − h 2 = 5 6 6 ⇒ r + h ≃ 348 c m
Đáp án D
Phương pháp:
- Lập hàm tinh thể tích khối nón, xét hàm suy ra GTLN.
- Tính diện tích S , S ' với chú ý S là diện tích hình tròn và S ' là diện tích xung quanh của hình nón.
Diện tích hình tròn S = πR 2
Gọi bán kính đường tròn đáy hình nón là r(0<r<R) ta có
Xét hàm
có
Bảng biến thiên:
Do đó thể tích V đạt GTLN tại
r
=
R
2
3
. Khi đó
Vậy
Chọn đáp án D.
Đáp án D
Diện tích S 1 là S 1 = 2 π r h + π r 2 = 62 , 6 π r + π r 2 ( diện tích toàn phần trừ một đáy)
Diện tích S 2 là S 2 = π 11 , 1 + r 2 − π r 2 = π 123 , 21 + 22 , 2 r ( diện tích hình tròn to trừ hình tròn nhỏ)
Khi đó:
P = 3 S 2 − S 1 = 3 π 22 , 2 r + 123 , 21 − 62 , 6 π r − π r 2 = 369 , 63 π + 4 π r − π r 2
Ta có:
4 r − r 2 = 4 − 2 − r 2 ≤ 4 ⇔ π 4 r − r 2 ≤ 4 π ⇒ P ≤ 373 , 63 π
Dấu “=” xảy ra khi và chỉ khi:
r = 2 ⇒ d = 2 x + r = 2 11 , 1 + 2 = 26 , 2 ⇒ r + d = 28 , 2