Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Công suất đèn: P = U I cos φ = 220 ( W ) = 0 , 22 ( k W )
Mối ngày đèn được bật trong 12h
=> Giá điện phải trả trong 1 ngày là: 0 , 22.12.2000 = 5280 (đồng)
Số tiền phải trả trong 1 năm là: 5280.365 = 1927200 (đồng)
u 220√2 -220√2 110√2 60° sáng sáng
Biểu diễn u bằng véc tơ quay như hình vẽ.
Đèn sáng ứng với véc tơ quét các góc như trên hình.
\(\varphi_{sáng}=4.60=240^0\)
\(\varphi_{tối}=360-240=120^0\)
\(\Rightarrow\frac{t_{sáng}}{t_{tối}}=\frac{\varphi_{sáng}}{\varphi_{tối}}=\frac{240}{120}=\frac{2}{1}\)
Mạch chỉ có điện trở thuần thì u cùng pha với i.
Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)
Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)
\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)
\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Bạn nên gửi mỗi câu hỏi một bài thôi để mọi người tiện trao đổi.
1. \(Z_L=200\sqrt{3}\Omega\), \(Z_C=100\sqrt{3}\Omega\)
Suy ra biểu thức của i: \(i=1,1\sqrt{2}\cos\left(100\pi t-\frac{\pi}{3}\right)A\)
Công suất tức thời: p = u.i
Để điện áp sinh công dương thì p > 0, suy ra u và i cùng dấu.
Biểu diễn vị trí tương đối của u và i bằng véc tơ quay ta có:
u u i i 120° 120°
Như vậy, trong 1 chu kì, để u, i cùng dấu thì véc tơ u phải quét 2 góc như hình vẽ.
Tổng góc quét: 2.120 = 2400
Thời gian: \(t=\frac{240}{360}.T=\frac{2}{3}.\frac{2\pi}{100\pi}=\frac{1}{75}s\)
2. Khi nối tắt 2 đầu tụ điện thì cường độ dòng điện hiệu dụng không đổi \(\Rightarrow Z_1=Z_2\Leftrightarrow Z_C-Z_L=Z_L\Leftrightarrow Z_C=2Z_L\)
\(U_C=1,2U_d\Leftrightarrow Z_C=2Z_d\Leftrightarrow Z_C=2\sqrt{R^2+Z_L^2}\)
\(\Leftrightarrow2Z_L=\sqrt{R^2+Z_L^2}\Leftrightarrow R=\sqrt{3}Z_L\)
Khi bỏ tụ C thì cường độ dòng điện của mạch là: \(I=\frac{U}{Z_d}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{220}{\sqrt{3.Z_L^2+Z_L^2}}=0,5\)
\(\Rightarrow Z_L=220\Omega\)
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Gọi $R_0,Z_L,Z_C$ là các thông số của quạt
Theo bài ra ta có $P_{đm}=120 W $, Dòng điện định mức của quạt là $I$
Gọi $R_2$ là giá trị của biến trở khi quạt hoạt động bình thường khi $U=220V$
Khi $R_1=70.\Omega $ thì $I_1=0,75 A,P_1=0,928P=111,36W$
$P_1=I_1^2.R_0$
$\Rightarrow R_0=\dfrac{P_1}{I_1^2}=198\Omega $
Ta có $I_1=\dfrac{U}{Z_1}=\dfrac{U}{\sqrt{\left(R_0+R_1\right)^2+\left(Z_L-Z_C\right)^2}}=\dfrac{220}{\sqrt{268^2+\left(Z_L-Z_C\right)^2}}$
$\Rightarrow \left(Z_L-Z_C\right)^2=119^2$
Ta lại có
$P=I^2.R_0$
Với $I=\dfrac{U}{Z}=\dfrac{U}{\sqrt{\left(R_0+R_1\right)^2+\left(Z_L-Z_C\right)^2}}$
$\Rightarrow P=\dfrac{U^2}{\left(R_0+R_2\right)^2+\left(Z_L-Z_C\right)^2}$
$\Rightarrow R_0+R_2=256\Omega $
$\Rightarrow R_2=58\Omega $
$R_2 < R_1$
$\Rightarrow \Delta. R=R_1-R_2=12\Omega $
Đáp án A