K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Diện tích một phần tư hình tròn là: \(\frac{1}{4}\pi {r^2}\)

Gọi x là biến số thể hiện kích thước của bán kính.

Công thức hàm số tính diện tích bồn hoa là: \(f(x) = \frac{1}{4}\pi {x^2}\)

+) Vì bán kính bồn hoa có kích thước từ 0,5 m đến 3 m nên \(0,5 \le x \le 3\)

Vậy tập xác định của hàm số này là \(D = [0,5;3]\)

b) Diện tích là \(0,5\pi \;{m^2}\) tức là\(f(x) = 0,5\pi \;\)

\( \Leftrightarrow \frac{1}{4}\pi {x^2} = 0,5\pi  \Leftrightarrow {x^2} = 2 \Rightarrow x = \sqrt 2 \) (do \(0,5 \le x \le 3\))

Vậy bán kính bồn hoa bằng \(\sqrt 2 \;m\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Vì công thức chu vi đường tròn là \(2\pi R\) với R là độ dài bán kính, trong đó \(\pi \) là số không thể tính chính xác được mà chỉ có thể lấy số gần đúng nên hai giá trị tính được là số gần đúng.

b)

Kết quả của An: \({S_1} = 2\pi R \approx 2.3,14.2 = 12,56\) cm:

Kết quả của Bình: \({S_2} = 2\pi R \approx 2.3,1.2 = 12,4\)cm.

Ta thấy \(\pi > 3,14 > 3,1 => 2.\pi. R > {S_1} > {S_2}\)

\( =  > \left| {2\pi R - {S_1}} \right| < \left| {2\pi R - {S_2}} \right|\)

Nói cách khác, sai số tuyệt đối của \(S_1\) nhỏ hơn \(S_2\).

=> Kết quả của An chính xác hơn.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Ta có: AM<AB nên \(0 < x < 4\)

Diện tích hình tròn đường kính AB là \({S_0} = \pi .{\left( {\frac{{AB}}{2}} \right)^2} = 4\pi \)

Diện tích hình tròn đường kính AM là \({S_1} = \pi .{\left( {\frac{{AM}}{2}} \right)^2} = \frac{{\pi .{x^2}}}{4}\)

Diện tích hình tròn đường kính MB là \({S_2} = \pi .{\left( {\frac{{MB}}{2}} \right)^2} = \pi .\frac{{{{\left( {4 - x} \right)}^2}}}{4}\)

Diện tích phần hình phẳng nằm trong hình tròn lớn và nằm ngoài hai hình tròn nhỏ là \(S(x) = {S_0} - {S_1} - {S_2} = 4\pi  - \frac{{{x^2}}}{4}\pi  - \frac{{{{\left( {4 - x} \right)}^2}}}{4}\pi  = \frac{{ - {x^2} + 4x}}{2}\pi \)

Vì diện tich S(x) không vượt quá 1 nửa tổng diện tích hai hình tròn nhỏ nên:

\(S(x) \le \frac{1}{2}\left( {{S_1} + {S_2}} \right)\)

Khi đó : \(\frac{{ - {x^2} + 4x}}{2}\pi  \le \frac{1}{2}.\frac{{{x^2} - 4x + 8}}{2}\pi \)

\( \Leftrightarrow  - {x^2} + 4x \le \frac{{{x^2} - 4x + 8}}{2}\)

\( \Leftrightarrow  - 2{x^2} + 8x \le {x^2} - 4x + 8\)

\( \Leftrightarrow 3{x^2} - 12x + 8 \ge 0\)

Xét tam thức \(3{x^2} - 12x + 8\) có \(\Delta ' = 12 > 0\) nên f(x) có 2 nghiệm phân biệt \({x_1} = \frac{{6 - 2\sqrt 3 }}{3};{x_2} = \frac{{6 + 2\sqrt 3 }}{3}\)

Mặt khác a=3>0, do đó ta có bảng xét dấu:

Do đó \(f(x) \ge 0\) với mọi \(x \in \left( { - \infty ;\frac{{6 - 2\sqrt 3 }}{3}} \right] \cup \left[ {\frac{{6 + 2\sqrt 3 }}{3}; + \infty } \right)\)

Mà 0<x<4 nên \(x \in \left( { - \infty ;\frac{{6 - 2\sqrt 3 }}{3}} \right] \cup \left[ {\frac{{6 + 2\sqrt 3 }}{3}; + \infty } \right)\)

12 tháng 4 2022

a.Ta có : \(x\in\left(\pi;\dfrac{3}{2}\pi\right)\Rightarrow cosx< 0\) 

\(cosx=-\sqrt{1-sin^2x}=-\sqrt{1-0,8^2}=-0,6\) 

\(tanx=\dfrac{4}{3};cotx=\dfrac{3}{4}\)

b. cos 2x = \(cos^2x-sin^2x=0,6^2-0,8^2=-0,28\)

\(P=2.cos2x=-0,56\)

\(Q=tan\left(2x+\dfrac{\pi}{3}\right)=\dfrac{tan2x+tan\dfrac{\pi}{3}}{1-tan2x.tan\dfrac{\pi}{3}}=\dfrac{tan2x+\sqrt{3}}{1-tan2x.\sqrt{3}}\)

tan 2x = \(\dfrac{2tanx}{1-tan^2x}=\dfrac{\dfrac{2.4}{3}}{1-\left(\dfrac{4}{3}\right)^2}=\dfrac{-24}{7}\) 

\(Q=\dfrac{-\dfrac{24}{7}+\sqrt{3}}{1+\dfrac{24}{7}.\sqrt{3}}\) \(=\dfrac{-24+7\sqrt{3}}{7+24\sqrt{3}}\) 

15 tháng 10 2023

Áp dụng định lý sin cho tam giác ABC, ta có:

\(2R_{giếng}=\dfrac{BC}{\sin A}=\dfrac{5}{\sin145^o}\) \(\Rightarrow R_{giếng}=\dfrac{5}{2\sin145^o}\) (m)

\(\Rightarrow S_{giếng}=\pi R_{giếng}^2=\pi\left(\dfrac{5}{2\sin145^o}\right)^2\approx59,68\left(m^2\right)\)

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Chu vi đường tròn là:

\(P = 2\pi R = 2\pi .1 = 2\pi \left( {cm} \right)\)

Bấm máy tính ta thấy \(2\pi  \approx 6,28\)

Vậy \(P \approx 6,28cm\).

Chú ý

Ta có thể lấy số gần đúng khác của \(2\pi \) như: 6,283 hoặc 6,283185

26 tháng 3 2017

Để phương trình x 2 + y 2 + m − 4 x + m + 2 y + 3 m + 10 =  là phương trình của một đường tròn có bán kính R = 2 thì:

m − 4 2 2 + ​   m + ​ 2 2 2 − ( 3 m + ​ 10 ) = 2 2 = 4 ⇔ m 2 − 8 m + ​ 16 4 + ​​​   m 2 + ​ 4 m + ​ 4 4 − 3 m − 10 − 4 = 0 ⇔ 2 m 2 − 4 m + ​ 20 4 ​​​  − 3 m − 14 = 0

⇔ 2 m 2 − 4 m + ​ 20 − 12 m − 56 = 0 ⇔ 2 m 2 − 16 m    − 36 = 0 ⇔ m = 4 ± 34

ĐÁP ÁN A